Do you want to publish a course? Click here

The BRITE Constellation nanosatellite mission: Testing, commissioning and operations

73   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

BRITE (BRIght Target Explorer) Constellation, the first nanosatellite mission applied to astrophysical research, is a collaboration among Austria, Canada and Poland. The fleet of satellites (6 launched, 5 functioning) performs precise optical photometry of the brightest stars in the night sky. A pioneering mission like BRITE - with optics and instruments restricted to small volume, mass and power in several nanosatellites, whose measurements must be coordinated in orbit - poses many unique challenges. We discuss the technical issues, including problems encountered during on-orbit commissioning (especially higher-than expected sensitivity of the CCDs to particle radiation). We describe in detail how the BRITE team has mitigated these problems, and provide a complete overview of mission operations. This paper serves as a template for how to effectively plan, build and operate future low-cost niche-driven space astronomy missions.



rate research

Read More

The BRIght Target Explorer (BRITE) Constellation is the first nanosatellite mission applied to astrophysical research. Five satellites in low-Earth orbits perform precise optical two-colour photometry of the brightest stars in the night sky. BRITE is naturally well suited for variability studies of hot stars. This contribution describes the basic outline of the mission and some initial problems that needed to be overcome. Some information on BRITE data products, how to access them, and how to join their scientific exploration is provided. Finally, a brief summary of the first scientific results obtained by BRITE is given.
The BRITE mission is a pioneering space project aimed at the long-term photometric monitoring of the brightest stars in the sky by means of a constellation of nano-satellites. Its main advantage is high photometric accuracy and time coverage inaccessible from the ground. The main aim of this paper is the presentation of procedures used to obtain high-precision photometry from a series of images acquired by the BRITE satellites in two modes of observing, stare and chopping. We developed two pipelines corresponding to the two modes of observing. The assessment of the performance of both pipelines is presented. It is based on two comparisons, which use data from six runs of the UniBRITE satellite: (i) comparison of photometry obtained by both pipelines on the same data, which were partly affected by charge transfer inefficiency (CTI), (ii) comparison of real scatter with theoretical expectations. It is shown that for CTI-affected observations, the chopping pipeline provides much better photometry than the other pipeline. For other observations, the results are comparable only for data obtained shortly after switching to chopping mode. Starting from about 2.5 years in orbit, the chopping mode of observing provides significantly better photometry for UniBRITE data than the stare mode. This paper shows that high-precision space photometry with low-cost nano-satellites is achievable. The proposed meth- ods, used to obtain photometry from images affected by high impulsive noise, can be applied to data from other space missions or even to data acquired from ground-based observations.
BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, the brightness and temperature variations of stars generally brighter than mag(V) ~ 4, with precision and time coverage not possible from the ground. The current mission design consists of six nanosats (hence Constellation): two from Austria, two from Canada, and two from Poland. Each 7 kg nanosat carries an optical telescope of aperture 3 cm feeding an uncooled CCD. One instrument in each pair is equipped with a blue filter, the other with a red filter. Each BRITE instrument has a wide field of view (~24 degrees), so up to about 15 bright stars can be observed simultaneously, sampled in 32 pixel x 32 pixel sub-rasters. Photometry of additional fainter targets, with reduced precision but thorough time sampling, will be possible through onboard data processing. The BRITE sample is dominated by the most intrinsically luminous stars: massive stars seen at all evolutionary stages, and evolved medium-class stars at the very end of their nuclear burning phases. The goals of BRITE-Constellation are to (1) measure p- and g-mode pulsations to probe the interiors and ages of stars through asteroseismology; (2) look for varying spots on the stars surfaces carried across the stellar disks by rotation, which are the sources of co-rotating interaction regions in the winds of the most luminous stars, probably arising from magnetic subsurface convection; and (3) search for planetary transits.
Chemically peculiar (CP) stars with a measurable magnetic field comprise the group of mCP stars. The pulsating members define the subgroup of rapidly oscillating Ap (roAp) stars, of which Alpha Circini is the brightest member. Hence, Alpha Circini allows the application of challenging techniques, such as interferometry, very high temporal and spectral resolution photometry, and spectroscopy in a wide wavelength range, that have the potential to provide unique information about the structure and evolution of a star. Based on new photometry from BRITE-Constellation, obtained with blue and red filters, and on photometry from WIRE, SMEI, and TESS we attempt to determine the surface spot structure of Alpha Circini and investigate pulsation frequencies. We used photometric surface imaging and frequency analyses and Bayesian techniques in order to quantitatively compare the probability of different models. BRITE-Constellation photometry obtained from 2014 to 2016 is put in the context of space photometry obtained by WIRE, SMEI, and TESS. This provides improvements in the determination of the rotation period and surface features (three spots detected and a fourth one indicated). The main pulsation frequencies indicate two consecutive radial modes and one intermediate dipolar mode. Advantages and problems of the applied Bayesian technique are discussed.
BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V = 4. The current mission design consists of three pairs of 7 kg nanosats from Austria, Canada and Poland carrying optical telescopes and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats are UNIBRITE, designed and built by University of Toronto Institute for Aerospace Studies - Space Flight Laboratory and its twin, BRITE-Austria, built by the Technical University Graz with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency under contract to the Canadian Space Agency into a low-Earth dusk-dawn polar orbit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا