Do you want to publish a course? Click here

Phosphorus-bearing molecules in solar-type star forming regions: First PO detection

252   0   0.0 ( 0 )
 Added by Bertrand Le Floch
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

As part of the Large Program ASAI (Astrochemical Surveys At IRAM), we have used the IRAM 30m telescope to lead a systematic search for the emission of rotational transitions of P-bearing species between 80 and 350 GHz towards L1157-B1, a shock position in the solar-type star forming region L1157. We report the detection of several transitions of PN and, for the first time, of prebiotic molecule PO. None of these species are detected towards the driving protostar of the outflow L1157-mm. Analysis of the line profiles shows that PN arises from the outflow cavity, where SiO, a strong shock tracer, is produced. Radiative transfer analysis yields an abundance of 2.5e-9 and 0.9e-9 for PO and PN, respectively. These results imply a strong depletion (approx 100) of Phosphorus in the quiescent cloud gas. Shock modelling shows that atomic N plays a major role in the chemistry of PO and PN. The relative abundance of PO and PN brings constraints both on the duration of the pre-shock phase, which has to be about 1 Myr, and on the shock parameters. The maximum temperature in the shock has to be larger than 4000K, which implies a shock velocity of 40 km/s.



rate research

Read More

Phosphorus is a key ingredient in terrestrial biochemistry, but is rarely observed in the molecular ISM and therefore little is known about how it is inherited during the star and planet formation sequence. We present observations of the phosphorus-bearing molecules PO and PN towards the Class I low-mass protostar B1-a using the IRAM 30m telescope, representing the second detection of phosphorus carriers in a Solar-type star forming region. The P/H abundance contained in PO and PN is ~10$^{-10}$-10$^{-9}$ depending on the assumed source size, accounting for just 0.05-0.5% of the solar phosphorus abundance and implying significant sequestration of phosphorus in refractory material. Based on a comparison of the PO and PN line profiles with the shock tracers SiO, SO$_2$, and CH$_3$OH, the phosphorus molecule emission seems to originate from shocked gas and is likely associated with a protostellar outflow. We find a PO/PN column density ratio of ~1-3, which is consistent with the values measured in the shocked outflow of the low-mass protostar L1157, the massive star-forming regions W51 and W3(OH), and the galactic center GMC G+0.693-0.03. This narrow range of PO/PN ratios across sources with a range of environmental conditions is surprising, and likely encodes information on how phosphorus carriers are stored in grain mantles.
The Large and Small Magellanic Clouds (LMC and SMC), gas-rich dwarf companions of the Milky Way, are the nearest laboratories for detailed studies on the formation and survival of complex organic molecules (COMs) under metal poor conditions. To date, only methanol, methyl formate, and dimethyl ether have been detected in these galaxies - all three toward two hot cores in the N113 star-forming region in the LMC, the only extragalactic sources exhibiting complex hot core chemistry. We describe a small and diverse sample of the LMC and SMC sources associated with COMs or hot core chemistry, and compare the observations to theoretical model predictions. Theoretical models accounting for the physical conditions and metallicity of hot molecular cores in the Magellanic Clouds have been able to broadly account for the existing observations, but fail to reproduce the dimethyl ether abundance by more than an order of magnitude. We discuss future prospects for research in the field of complex chemistry in the low-metallicity environment. The detection of COMs in the Magellanic Clouds has important implications for astrobiology. The metallicity of the Magellanic Clouds is similar to galaxies in the earlier epochs of the Universe, thus the presence of COMs in the LMC and SMC indicates that a similar prebiotic chemistry leading to the emergence of life, as it happened on Earth, is possible in low-metallicity systems in the earlier Universe.
103 - B. Lefloch 2017
We report on a systematic search for oxygen-bearing Complex Organic Molecules (COMs) in the Solar-like protostellar shock region L1157-B1, as part of the IRAM Large Program Astrochemical Surveys At IRAM (ASAI). Several COMs are unambiguously detected, some for the first time, such as ketene H$_2$CCO, dimethyl ether (CH$_3$OCH$_3$) and glycolaldehyde (HCOCH$_2$OH), and others firmly confirmed, such as formic acid (HCOOH) and ethanol (C$_2$H$_5$OH). Thanks to the high sensitivity of the observations and full coverage of the 1, 2 and 3mm wavelength bands, we detected numerous (10--125) lines from each of the detected species. Based on a simple rotational diagram analysis, we derive the excitation conditions and the column densities of the detected COMs. Combining our new results with those previously obtained towards other protostellar objects, we found a good correlation between ethanol, methanol and glycolaldehyde. We discuss the implications of these results on the possible formation routes of ethanol and glycolaldehyde.
Phosphine is now well established as a biosignature, which has risen to prominence with its recent tentative detection on Venus. To follow up this discovery and related future exoplanet biosignature detections, it is important to spectroscopically detect the presence of phosphorus-bearing atmospheric molecules that could be involved in the chemical networks producing, destroying or reacting with phosphine. We start by enumerating phosphorus-bearing molecules (P-molecules) that could potentially be detected spectroscopically in planetary atmospheres and collecting all available spectral data. Gaseous P-molecules are rare, with speciation information scarce. Very few molecules have high accuracy spectral data from experiment or theory; instead, the best available data is from the RASCALL approach and obtained using functional group theory. Here, we present a high-throughput approach utilising established computational quantum chemistry methods (CQC) to produce a database of approximate infrared spectra for 958 P-molecules. These data are of interest for astronomy and astrochemistry (importantly identifying potential ambiguities in molecular assignments), improving RASCALLs underlying data, big data spectral analysis and future machine learning applications. However, this data will probably not be sufficiently accurate for secure experimental detections of specific molecules within complex gaseous mixtures in laboratory or astronomy settings.
97 - A. Coletta 2020
We have studied four complex organic molecules (COMs), methyl formate ($CH_3OCHO$), dimethyl ether ($CH_3OCH_3$), formamide ($NH_2CHO$), and ethyl cyanide ($C_2H_5CN$), towards a large sample of 39 high-mass star-forming regions representing different evolutionary stages, from early to evolved phases. We aim to identify potential correlations between the molecules and to trace their evolutionary sequence through the star formation process. We analysed spectra obtained at 3, 2, and 0.9 mm with the IRAM-30m telescope. We derived the main physical parameters for each species by fitting the molecular lines. We compared them and evaluated their evolution, also taking several other interstellar environments into account. We report detections in 20 sources, revealing a clear dust absorption effect on column densities. Derived abundances are ~$10^{-10}-10^{-7}$ for $CH_3OCHO$ and $CH_3OCH_3$, ~$10^{-12}-10^{-10}$ for $NH_2CHO$, and ~$10^{-11}-10^{-9}$ for $C_2H_5CN$. The abundances of $CH_3OCHO$, $CH_3OCH_3$, and $C_2H_5CN$ are very strongly correlated (r>0.92) across ~4 orders of magnitude. $CH_3OCHO$ and $CH_3OCH_3$ show the strongest correlations in most parameters, and a nearly constant ratio (~1) over a remarkable ~9 orders of magnitude in luminosity for a wide variety of sources: pre-stellar to evolved cores, low- to high-mass objects, shocks, Galactic clouds, and comets. This indicates that COMs chemistry is likely early developed and then preserved through evolved phases. Moreover, the molecular abundances clearly increase with evolution. We consider $CH_3OCHO$ and $CH_3OCH_3$ to be most likely chemically linked: they could e.g. share a common precursor, or be formed one from the other. We propose a general scenario for all COMs, involving a formation in the cold, earliest phases of star formation and a following increasing desorption with the progressive heating of the evolving core.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا