Do you want to publish a course? Click here

Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data

130   0   0.0 ( 0 )
 Added by Leif R\\\"adel
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 191 TeV and 8.3 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at $5.6,sigma$ significance. The data are well described by an isotropic, unbroken power law flux with a normalization at 100 TeV neutrino energy of $left(0.90^{+0.30}_{-0.27}right)times10^{-18},mathrm{GeV^{-1},cm^{-2},s^{-1},sr^{-1}}$ and a hard spectral index of $gamma=2.13pm0.13$. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest energy event observed has a reconstructed muon energy of $(4.5pm1.2),mathrm{PeV}$ which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known $gamma$-ray sources was found. Using the high statistics of atmospheric neutrinos we report the currently best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below $1.06$ in units of the flux normalization of the model in Enberg et al. (2008).



rate research

Read More

The IceCube Neutrino Observatory has accumulated a total of 318 billion cosmic-ray induced muon events between May 2009 and May 2015. This data set was used for a detailed analysis of the cosmic-ray arrival direction anisotropy in the TeV to PeV energy range. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of $10^{-3}$ up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole ($ellleq 4$) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than $10^{circ}$, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5,PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis. The high-statistics data set reveals more details on the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an $E^{-2}$ energy spectrum assumed, which is 0.0021 GeV cm$^{-2}$ per burst for emission timescales up to textasciitilde10$^2$ seconds from the northern hemisphere stacking search.
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($sim 90 %$) by electron and tau flavors. The flux, observed in the sensitive energy range from $16,mathrm{TeV}$ to $2.6,mathrm{PeV}$, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be $gamma=2.53pm0.07$ and a flux normalization for each neutrino flavor of $phi_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100, mathrm{TeV}$, in agreement with IceCubes complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices $gammaleq2.28$ at $ge3sigma$ significance level. Due to high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below $sim100,{rm{TeV}}$ compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value $ge 0.06$). The sizable and smooth flux measured below $sim 100,{rm{TeV}}$ remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi-LAT, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma-rays.
Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions.
122 - Frank McNally 2021
The IceCube Observatory has collected over 577 billion cosmic-ray induced muon events in its final configuration from May 2011 to May 2020. We used this data set to provide an unprecedented statistically accurate map of the cosmic ray arrival direction distribution in the TeV-PeV energy range scale in the Southern Hemisphere. Such an increase in event statistics makes it possible to extend the sensitivity to anisotropies at higher cosmic ray energies and smaller angular scales. It will also facilitate a more detailed assessment of the observatory stability over both short- and long-time scales. This will enable us to study the time variability of the cosmic ray anisotropy on a yearly-base and over the entire data sample period covering most of the solar cycle 24. We present the preliminary results from the study with the extended event sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا