Do you want to publish a course? Click here

Aspects of the refined Gribov-Zwanziger action in linear covariant gauges

228   0   0.0 ( 0 )
 Added by Marcio Capri
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We prove the renormalizability to all orders of a refined Gribov-Zwanziger type action in linear covariant gauges in four-dimensional Euclidean space. In this model, the Gribov copies are taken into account by requiring that the Faddeev-Popov operator is positive definite with respect to the transverse component of the gauge field, a procedure which turns out to be analogous to the restriction to the Gribov region in the Landau gauge. The model studied here can be regarded as the first approximation of a more general nonperturbative BRST invariant formulation of the refined Gribov-Zwanziger action in linear covariant gauges obtained recently in [Phys. Rev. D 92, no. 4, 045039 (2015) and arXiv:1605.02610 [hep-th]]. A key ingredient of the set up worked out in [Phys. Rev. D 92, no. 4, 045039 (2015) and arXiv:1605.02610 [hep-th]] is the introduction of a gauge invariant field configuration $mathbf{A}_{mu}$ which can be expressed as an infinite non-local series in the starting gauge field $A_mu$. In the present case, we consider the approximation in which only the first term of the series representing $mathbf{A}_{mu}$ is considered, corresponding to a pure transverse gauge field. The all order renormalizability of the resulting action gives thus a strong evidence of the renormalizability of the aforementioned more general nonperturbative BRST invariant formulation of the Gribov horizon in linear covariant gauges.



rate research

Read More

The Refined Gribov-Zwanziger framework takes into account the existence of equivalent gauge field configurations in the gauge-fixing quantization procedure of Euclidean Yang-Mills theories. Recently, this setup was extended to the family of linear covariant gauges giving rise to a local and BRST-invariant action. In this paper, we give an algebraic proof of the renormalizability of the resulting action to all orders in perturbation theory.
In this paper, we discuss the gluon propagator in the linear covariant gauges in $D=2,3,4$ Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for $D=3,4$, the gluon propagator displays a massive (decoupling) behaviour, while for $D=2$, a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced non-perturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our non-perturbative definition of the linear covariant gauge.
We introduce, within the Refined-Gribov-Zwanziger setup, a composite BRST invariant fermionic operator coupled to the inverse of the Faddeev-Popov operator. As a result, an effective BRST invariant action in Euclidean space-time is constructed, enabling us to pave the first step towards the study of the behaviour of the fermion propagator in the infrared region in the class of the linear covariant gauges. The aforementioned action is proven to be renormalizable to all orders by means of the algebraic renormalization procedure.
We point out the existence of a non-perturbative exact nilpotent BRST symmetry for the Gribov-Zwanziger action in the Landau gauge. We then put forward a manifestly BRST invariant resolution of the Gribov gauge fixing ambiguity in the linear covariant gauge.
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully-dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modelled by means of certain physically motivated Ansatze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansatze are compatible with the existence of nontrivial solutions. When such Ansatze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic zero crossing, while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا