A uniaxial stress capacitive dilatometer for high-resolution thermal expansion and magnetostriction under multiextreme conditions


Abstract in English

Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter it is required to study materials under multi-extreme conditions, in particular down to very low temperatures, in very high magnetic fields, as well as under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross-section of (0.5~mm)$^2$. We describe the design and performance test of the dilatometer which resolves length changes with high resolution of $0.02 mathrm{AA}$ at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.

Download