Transient chaos is a characteristic behavior in nonlinear dynamics where trajectories in a certain region of phase space behave chaotically for a while, before escaping to an external attractor. In some situations the escapes are highly undesirable, so that it would be necessary to avoid such a situation. In this paper we apply a control method known as partial control that allows one to prevent the escapes of the trajectories to the external attractors, keeping the trajectories in the chaotic region forever. To illustrate how the method works, we have chosen the Lorenz system for a choice of parameters where transient chaos appears, as a paradigmatic example in nonlinear dynamics. We analyze three quite different ways to implement the method. First, we apply this method by building a 1D map using the successive maxima of one of the variables. Next, we implement it by building a 2D map through a Poincar{e} section. Finally, we built a 3D map, which has the advantage of using a fixed time interval between application of the control, which can be useful for practical applications.