Do you want to publish a course? Click here

Counting racks of order n

66   0   0.0 ( 0 )
 Added by Oliver Riordan
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A rack on $[n]$ can be thought of as a set of maps $(f_x)_{x in [n]}$, where each $f_x$ is a permutation of $[n]$ such that $f_{(x)f_y} = f_y^{-1}f_xf_y$ for all $x$ and $y$. In 2013, Blackburn showed that the number of isomorphism classes of racks on $[n]$ is at least $2^{(1/4 - o(1))n^2}$ and at most $2^{(c + o(1))n^2}$, where $c approx 1.557$; in this paper we improve the upper bound to $2^{(1/4 + o(1))n^2}$, matching the lower bound. The proof involves considering racks as loopless, edge-coloured directed multigraphs on $[n]$, where we have an edge of colour $y$ between $x$ and $z$ if and only if $(x)f_y = z$, and applying various combinatorial tools.



rate research

Read More

The connective constant $mu(G)$ of a graph $G$ is the asymptotic growth rate of the number $sigma_{n}$ of self-avoiding walks of length $n$ in $G$ from a given vertex. We prove a formula for the connective constant for free products of quasi-transitive graphs and show that $sigma_{n}sim A_{G} mu(G)^{n}$ for some constant $A_{G}$ that depends on $G$. In the case of finite products $mu(G)$ can be calculated explicitly and is shown to be an algebraic number.
61 - Mohamed Elhamdadi 2019
This short survey contains some recent developments of the algebraic theory of racks and quandles. We report on some elements of representation theory of quandles and ring theoretic approach to quandles.
We give an elementary, case-free, Coxeter-theoretic derivation of the formula $h^nn!/|W|$ for the number of maximal chains in the noncrossing partition lattice $NC(W)$ of a real reflection group $W$. Our proof proceeds by comparing the Deligne-Reading recursion with a parabolic recursion for the characteristic polynomial of the $W$-Laplacian matrix considered in our previous work. We further discuss the consequences of this formula for the geometric group theory of spherical and affine Artin groups.
A graph is said to be {em vertex-transitive non-Cayley} if its full automorphism group acts transitively on its vertices and contains no subgroups acting regularly on its vertices. In this paper, a complete classification of cubic vertex-transitive non-Cayley graphs of order $12p$, where $p$ is a prime, is given. As a result, there are $11$ sporadic and one infinite family of such graphs, of which the sporadic ones occur when $p=5$, $7$ or $17$, and the infinite family exists if and only if $pequiv1 (mod 4)$, and in this family there is a unique graph for a given order.
134 - Gary McConnell 2012
Let m and n be any integers with n>m>=2. Using just the entropy function it is possible to define a partial order on S_mn (the symmetric group on mn letters) modulo a subgroup isomorphic to S_m x S_n. We explore this partial order in the case m=2, n=3, where thanks to the outer automorphism the quotient space is actually isomorphic to a parabolic quotient of S_6. Furthermore we show that in this case it has a fairly simple algebraic description in terms of elements of the group ring.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا