Do you want to publish a course? Click here

Spatiotemporal Characterization of Supercontinuum Extending from the Visible to the Mid-Infrared in Multimode Graded-Index Optical Fiber

72   0   0.0 ( 0 )
 Added by Alessandro Tonello
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat supercontinuum generation with a uniform bell-shaped spatial beam profile extending from the visible to the mid-infrared at 2500,nm. We study the development of the supercontinuum along the multimode fiber by the cut-back method, which permits us to analyze the competition between the Kerr-induced geometric parametric instability and stimulated Raman scattering. We also performed a spectrally resolved temporal analysis of the supercontinuum emission.



rate research

Read More

Solitons are non-dispersing localized waves that occur in diverse physical settings. A variety of optical solitons have been observed, b
The generation of a two-octave supercontinuum from the visible to mid-infrared (700 - 2800 nm) in a non-silica graded-index multimode fiber is reported. The fiber design is based on a nanostructured core comprised of two types of drawn lead-bismuth-gallate glass rods with different refractive indices. This structure yields an effective parabolic index profile, an extended transmission window, and ten times increased nonlinearity when compared to silica fibers. Using femtosecond pulse pumping at wavelengths in both normal and anomalous dispersion regimes, a detailed study is carried out into the supercontinuum generating mechanisms and instabilities seeded by periodic self imaging. Significantly, suitable injection conditions in the high power regime are found to result in the output beam profile showing clear signatures of beam self-cleaning from nonlinear mode mixing. Experimental observations are interpreted using spatio-temporal 3+1D numerical simulations of the generalized nonlinear Schrodinger equation, and simulated spectra are in excellent agreement with experiment over the full two-octave spectral bandwidth. These results demonstrate a new pathway towards the generation of bright, ultrabroadband light sources in the mid-infrared.
We demonstrate the generation of a low-noise, octave-spanning mid-infrared supercontinuum from 1700 to 4800 nm by injecting femtosecond pulses into the normal dispersion regime of a multimode step-index chalcogenide fiber with 100 $mu$m core diameter. We conduct a systematic study of the intensity noise across the supercontinuum spectrum and show that the initial fluctuations of the pump laser are at most amplified by a factor of three. We also perform a comparison with the noise characteristics of an octave-spanning supercontinuum generated in the anomalous dispersion regime of a multimode fluoride fiber with similar core size and show that the all-normal dispersion supercontinuum in the multimode chalcogenide fiber has superior noise characteristics. Our results open up novel perspective for many practical applications such as long-distance remote sensing where high power and low noise are paramount.
We report the experimental observation of Kerr beam self-cleaning in a graded-index multimode fiber, leading to output beam profiles different from a bell shape, close to the $LP_{01}$ mode. For specific coupling conditions, nonlinear coupling among the guided modes can reshape the output speckle pattern generated by a pulsed beam into the low order $LP_{11}$ mode. This was observed in a few meters long multimode fiber with 750 ps pulses at 1064 nm in the normal dispersion regime. The power threshold for $LP_{11}$ mode self-cleaning was about three times larger than that required for Kerr nonlinear self- cleaning into the $LP_{01}$ mode.
We present a new spatial-spectral mapping technique permitting to measure the beam intensity at the output of a graded-index (GRIN) multimode fiber with sub-nanometric spectral resolution. We apply this method to visualize the fine structure of the beam shape of a sideband generated at 1870 nm by geometric parametric instability (GPI) in a GRIN fiber. After spatial-spectral characterization, we amplify the GPI sideband with a Tm-doped fiber amplifier to obtain a microjoule-scale picosecond pump whose spectrum is finally broadened in a segment of InF3 optical fiber to achieve supercontinuum ranging from 1.7 {mu}m up to 3.4 {mu}m
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا