Do you want to publish a course? Click here

Mapping of Electronic Band Gap along the Axis of Single InAs/InSbxAs1-x Heterostructured Nanowire

54   0   0.0 ( 0 )
 Added by Anushree Roy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the graded electronic band gap along the axis of individual heterostructured WZ-ZB InAs/InSb0.12As0.88 nanowires. Resonance Raman imaging has been exploited to map the axial variation in the second excitation gap energy (E1) at the high symmetry point (L point) of the Brillouin zone. We relate the origin of the observed evolution of the gap energy to the fine tuning of the alloy composition from the tip towards the interface of the nanowire. The electronic band structures of InAs, InSb and InSbxAs1-x alloy systems at x=0.125, 0.25, 0.50, 0.75 and 0.875, using all electron density functional theory code Wien2k, are reported. The measured band gap along the axis of the InAs/InSb0.12As0.88 nanowire is correlated with the calculated gap energy at the A point and the L point of the Brillouin zone for InAs and InSb0.125As0.875, respectively. We draw a one-to-one correspondence between the variation of the E1 gap and the fundamental E0 gap in the calculated electronic band structure and propose the graded fundamental gap energy across the axis of the nanowire.



rate research

Read More

The article presents a mapping of the residual strain along the axis of InAs/InSb heterostructured nanowires. Using confocal Raman measurements, we observe a gradual shift in the TO phonon mode along the axis of these nanowires. We attribute the observed TO phonon shift to a residual strain arising from the InAs/InSb lattice mismatch. We find that the strain is maximum at the interface and then monotonically relaxes towards the tip of the nanowires. We also analyze the crystal structure of the InSb segment through selected area electron diffraction measurements and electron diffraction tomography on individual nanowires.
We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires with nominally identical diameter. We compare the transfer characteristics and field-effect mobility versus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors.
Superconductor/semiconductor-nanowire hybrid structures can serve as versatile building blocks to realize Majorana circuits or superconducting qubits based on quantized levels such as Andreev qubits. For all these applications it is essential that the superconductor-semiconductor interface is as clean as possible. Furthermore, the shape and dimensions of the superconducting electrodes needs to be precisely controlled. We fabricated self-defined InAs/Al core/shell nanowire junctions by a fully in-situ approach, which meet all these criteria. Transmission electron microscopy measurements confirm the sharp and clean interface between the nanowire and the in-situ deposited Al electrodes which were formed by means of shadow evaporation. Furthermore, we report on tunnel spectroscopy, gate and magnetic field-dependent transport measurements. The achievable short junction lengths,the observed hard-gap and the magnetic field robustness make this new hybrid structure very attractive for applications which rely on a precise control of the number of sub-gap states, like Andreev qubits or topological systems.
118 - A.A. Zhukov , Ch. Volk , A. Winden 2013
We performed measurements at helium temperatures of the electronic transport in an InAs quantum wire ($R_{wire} sim 30$,k$Omega$) in the presence of a charged tip of an atomic force microscope serving as a mobile gate. The period and the amplitude of the observed quasiperiodic oscillations are investigated in detail as a function of electron concentration in the linear and non-linear regime. We demonstrate the influence of the tip-to-sample distance on the ability to locally affect the top subband electrons as well as the electrons in the disordered sea. Furthermore, we introduce a new method of detection of the subband occupation in an InAs wire, which allows us to evaluate the number of the electrons in the conductive band of the wire.
Carbon nanotubes (CNTs) are a promising material for high-performance electronics beyond silicon. But unlike silicon, the nature of the transport band gap in CNTs is not fully understood. The transport gap in CNTs is predicted to be strongly driven by electron-electron (e-e) interactions and correlations, even at room temperature. Here, we use dielectric liquids to screen e-e interactions in individual suspended ultra-clean CNTs. Using multiple techniques, the transport gap is measured as dielectric screening is increased. Changing the dielectric environment from air to isopropanol, we observe a 25% reduction in the transport gap of semiconducting CNTs, and a 32% reduction in the band gap of narrow-gap CNTs. Additional measurements are reported in dielectric oils. Our results elucidate the nature of the transport gap in CNTs, and show that dielectric environment offers a mechanism for significant control over the transport band gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا