Do you want to publish a course? Click here

The Complexity of Drawing Graphs on Few Lines and Few Planes

181   0   0.0 ( 0 )
 Added by Krzysztof Fleszar
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

It is well known that any graph admits a crossing-free straight-line drawing in $mathbb{R}^3$ and that any planar graph admits the same even in $mathbb{R}^2$. For a graph $G$ and $d in {2,3}$, let $rho^1_d(G)$ denote the minimum number of lines in $mathbb{R}^d$ that together can cover all edges of a drawing of $G$. For $d=2$, $G$ must be planar. We investigate the complexity of computing these parameters and obtain the following hardness and algorithmic results. - For $din{2,3}$, we prove that deciding whether $rho^1_d(G)le k$ for a given graph $G$ and integer $k$ is ${existsmathbb{R}}$-complete. - Since $mathrm{NP}subseteq{existsmathbb{R}}$, deciding $rho^1_d(G)le k$ is NP-hard for $din{2,3}$. On the positive side, we show that the problem is fixed-parameter tractable with respect to $k$. - Since ${existsmathbb{R}}subseteqmathrm{PSPACE}$, both $rho^1_2(G)$ and $rho^1_3(G)$ are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to $rho^1_2$ or $rho^1_3$ sometimes require irrational coordinates. - Let $rho^2_3(G)$ be the minimum number of planes in $mathbb{R}^3$ needed to cover a straight-line drawing of a graph $G$. We prove that deciding whether $rho^2_3(G)le k$ is NP-hard for any fixed $k ge 2$. Hence, the problem is not fixed-parameter tractable with respect to $k$ unless $mathrm{P}=mathrm{NP}$.



rate research

Read More

We investigate the problem of drawing graphs in 2D and 3D such that their edges (or only their vertices) can be covered by few lines or planes. We insist on straight-line edges and crossing-free drawings. This problem has many connections to other challenging graph-drawing problems such as small-area or small-volume drawings, layered or track drawings, and drawing graphs with low visual complexity. While some facts about our problem are implicit in previous work, this is the first treatment of the problem in its full generality. Our contribution is as follows. We show lower and upper bounds for the numbers of lines and planes needed for covering drawings of graphs in certain graph classes. In some cases our bounds are asymptotically tight; in some cases we are able to determine exact values. We relate our parameters to standard combinatorial characteristics of graphs (such as the chromatic number, treewidth, maximum degree, or arboricity) and to parameters that have been studied in graph drawing (such as the track number or the number of segments appearing in a drawing). We pay special attention to planar graphs. For example, we show that there are planar graphs that can be drawn in 3-space on a lot fewer lines than in the plane.
We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph $G$, the goal is to construct a straight-line drawing $Gamma$ of $G$ in the plane such that, for any two vertices $u$ and $v$ of $G$, the ratio between the minimum length of any path from $u$ to $v$ and the Euclidean distance between $u$ and $v$ is small. The maximum such ratio, over all pairs of vertices of $G$, is the spanning ratio of $Gamma$. First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio $1$, a proper straight-line drawing with spanning ratio $1$, and a planar straight-line drawing with spanning ratio $1$ are NP-complete, $exists mathbb R$-complete, and linear-time solvable problems, respectively, where a drawing is proper if no two vertices overlap and no edge overlaps a vertex. Second, we show that moving from spanning ratio $1$ to spanning ratio $1+epsilon$ allows us to draw every graph. Namely, we prove that, for every $epsilon>0$, every (planar) graph admits a proper (resp. planar) straight-line drawing with spanning ratio smaller than $1+epsilon$. Third, our drawings with spanning ratio smaller than $1+epsilon$ have large edge-length ratio, that is, the ratio between the length of the longest edge and the length of the shortest edge is exponential. We show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line drawing with constant spanning ratio.
A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this paper we give some sufficient and necessary conditions for a Neumaier graph to be strongly regular. Further we show that there does not exist Neumaier graphs with exactly four distinct eigenvalues. We also determine the Neumaier graphs with smallest eigenvalue -2.
219 - Hans Raj Tiwary 2012
We study the complexity of computing the projection of an arbitrary $d$-polytope along $k$ orthogonal vectors for various input and output forms. We show that if $d$ and $k$ are part of the input (i.e. not a constant) and we are interested in output-sensitive algorithms, then in most forms the problem is equivalent to enumerating vertices of polytopes, except in two where it is NP-hard. In two other forms the problem is trivial. We also review the complexity of computing projections when the projection directions are in some sense non-degenerate. For full-dimensional polytopes containing origin in the interior, projection is an operation dual to intersecting the polytope with a suitable linear subspace and so the results in this paper can be dualized by interchanging vertices with facets and projection with intersection. To compare the complexity of projection and vertex enumeration, we define new complexity classes based on the complexity of Vertex Enumeration.
74 - Sujoy Bhore , Rahul Jain 2021
The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal graphs. For each of these graph families, we present space-efficient algorithms for the Reachability problem. For intersection graphs of Jordan regions, we show how to obtain a good vertex separator in a space-efficient manner and use it to solve the Reachability in polynomial time and $O(m^{1/2}log n)$ space, where $n$ is the number of Jordan regions, and $m$ is the total number of crossings among the regions. We use a similar approach for chordal graphs and obtain a polynomial-time and $O(m^{1/2}log n)$ space algorithm, where $n$ and $m$ are the number of vertices and edges, respectively. However, we use a more involved technique for unit contact disk graphs (penny graphs) and obtain a better algorithm. We show that for every $epsilon> 0$, there exists a polynomial-time algorithm that can solve Reachability in an $n$ vertex directed penny graph, using $O(n^{1/4+epsilon})$ space. We note that the method used to solve penny graphs does not extend naturally to the class of geometric intersection graphs that include arbitrary size cliques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا