Do you want to publish a course? Click here

Analytic corrections to AdS by scalar matter and curvature squared term

73   0   0.0 ( 0 )
 Added by Lata Joshi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the background solution for scalar matter coupled higher derivative gravity originally reported in arXiv: 1409.8019[hep-th]. In this letter, we choose a convenient ansatz for metric which determines the first order perturbative corrections to scalar as well as geometry.



rate research

Read More

We investigate a systematic approach to include curvature corrections to the isometry algebra of flat space-time order-by-order in the curvature scale. The Poincare algebra is extended to a free Lie algebra, with generalised boosts and translations that no longer commute. The additional generators satisfy a level-ordering and encode the curvature corrections at that order. This eventually results in an infinite-dimensional algebra that we refer to as Poincare${}_infty$, and we show that it contains among others an (A)dS quotient. We discuss a non-linear realisation of this infinite-dimensional algebra, and construct a particle action based on it. The latter yields a geodesic equation that includes (A)dS curvature corrections at every order.
In this paper, we investigate the thermal effect on the Casimir energy associated with a massive scalar quantum field confined between two large parallel plates in a CPT-even, aether-like Lorentz-breaking scalar field theory. In order to do that we consider a nonzero chemical potential for the scalar field assumed to be in thermal equilibrium at some finite temperature. The calculations of the energies are developed by using the Abel-Plana summation formula, and the corresponding results are analyzed in several asymptotic regimes of the parameters of the system, like mass, separations between the plates and temperature.
167 - Xiaoxiang Chai 2021
We study harmonic maps from a 3-manifold with boundary to $mathbb{S}^1$ and prove a special case of dihedral rigidity of three dimensional cubes whose dihedral angles are $pi / 2$. Furthermore we give some applications to mapping torus hyperbolic 3-manifolds.
Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified as the expectation value of a quantum field, evolving in a quantum effective potential. The shape of this potential is determined by the underlying tree-level potential, dressed by quantum corrections from the scalar field itself and the metric perturbations. Following [1], we compute the effective scalar field equations and the corrected Friedmann equations to quadratic order in both scalar field, scalar metric and tensor perturbations. We identify the quantum corrections from different sources at leading order in slow-roll, and estimate their magnitude in benchmark models of inflation. We comment on the implications of non-minimal coupling to gravity in this context.
We describe in more detail the general relation uncovered in our previous work between boundary correlators in de Sitter (dS) and in Euclidean anti-de Sitter (EAdS) space, at any order in perturbation theory. Assuming the Bunch-Davies vacuum at early times, any given diagram contributing to a boundary correlator in dS can be expressed as a linear combination of Witten diagrams for the corresponding process in EAdS, where the relative coefficients are fixed by consistent on-shell factorisation in dS. These coefficients are given by certain sinusoidal factors which account for the change in coefficient of the contact sub-diagrams from EAdS to dS, which we argue encode (perturbative) unitary time evolution in dS. dS boundary correlators with Bunch-Davies initial conditions thus perturbatively have the same singularity structure as their Euclidean AdS counterparts and the identities between them allow to directly import the wealth of techniques, results and understanding from AdS to dS. This includes the Conformal Partial Wave expansion and, by going from single-valued Witten diagrams in EAdS to Lorentzian AdS, the Froissart-Gribov inversion formula. We give a few (among the many possible) applications both at tree and loop level. Such identities between boundary correlators in dS and EAdS are made manifest by the Mellin-Barnes representation of boundary correlators, which we point out is a useful tool in its own right as the analogue of the Fourier transform for the dilatation group. The Mellin-Barnes representation in particular makes manifest factorisation and dispersion formulas for bulk-to-bulk propagators in (EA)dS, which imply Cutkosky cutting rules and dispersion formulas for boundary correlators in (EA)dS. Our results are completely general and in particular apply to any interaction of (integer) spinning fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا