No Arabic abstract
A study of $B_c^+to K^+K^-pi^+$ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 $mathrm{fb}^{-1}$ collected by the LHCb experiment in $pp$ collisions at centre-of-mass energies of $7$ and $8$ TeV. Evidence for the decay $B_c^+tochi_{c0}(to K^+K^-)pi^+$ is reported with a significance of 4.0 standard deviations, resulting in the measurement of $frac{sigma(B_c^+)}{sigma(B^+)}timesmathcal{B}(B_c^+tochi_{c0}pi^+)$ to be $(9.8^{+3.4}_{-3.0}(mathrm{stat})pm 0.8(mathrm{syst}))times 10^{-6}$. Here $mathcal{B}$ denotes a branching fraction while $sigma(B_c^+)$ and $sigma(B^+)$ are the production cross-sections for $B_c^+$ and $B^+$ mesons. An indication of $bar b c$ weak annihilation is found for the region $m(K^-pi^+)<1.834mathrm{,Gekern -0.1em V!/}c^2$, with a significance of 2.4 standard deviations.
The decay $B_crightarrow J/psi K^+ K^- pi^+$ is observed for the first time, using proton-proton collisions collected with the LHCb detector corresponding to an integrated luminosity of 3fb$^{-1}$. A signal yield of $78pm14$ decays is reported with a significance of 6.2 standard deviations. The ratio of the branching fraction of $B_c rightarrow J/psi K^+ K^- pi^+$ decays to that of $B_c rightarrow J/psi pi^+$ decays is measured to be $0.53pm 0.10pm0.05$, where the first uncertainty is statistical and the second is systematic.
Measurements of $B_c^+$ production and mass are performed with the decay mode $B_c^+ to J/psi pi^+$ using 0.37 fb$^{-1}$ of data collected in $pp$ collisions at $sqrt{s}=7$ TeV by the LHCb experiment. The ratio of the production cross-section times branching fraction between the $B_c^+ to J/psi pi^+$ and the $B^+ to J/psi K^+$ decays is measured to be $(0.68 pm 0.10,({rm stat.}) pm 0.03,({rm syst.}) pm 0.05,({rm lifetime}))$% for $B_c^+$ and $B^+$ mesons with transverse momenta $p_{rm T}>4 $GeV/$c$ and pseudorapidities $2.5<eta<4.5$. The $B_c^+$ mass is directly measured to be $6273.7 pm 1.3,({rm stat.}) pm 1.6 ,({rm syst.})$ MeV/$c^2$, and the measured mass difference with respect to the $B^+$ meson is $M(B_c^+)-M(B^+) = 994.6 pm 1.3,({rm stat.}) pm 0.6,({rm syst.})$ MeV/$c^2$.
We present a model for the decay $D^+to K^-pi^+pi^+$. The weak interaction part of this reaction is described using the effective weak Hamiltonian in the factorisation approach. Hadronic final state interactions are taken into account through the $Kpi$ scalar and vector form factors fulfilling analyticity, unitarity and chiral symmetry constraints. Allowing for a global phase difference between the $S$ and $P$ waves of $-65^circ$, the Dalitz plot of the $D^+to K^-pi^+pi^+$ decay, the $Kpi$ invariant mass spectra and the total branching ratio due to $S$-wave interactions are well reproduced.
The decay $B_c^+ to psi(2S)pi^+$ with $psi(2S) to mu^+mu^-$ is observed with a significance of $5.2,sigma$ using $pp$ collision data corresponding to an integrated luminosity of $1.0,invfb$ collected by the LHCb experiment. The branching fraction of $B_c^+ to psi(2S)pi^+$ decays relative to that of the $B_c^+ to J/psipi^+$ mode is measured to be begin{equation*} frac{mathcal{B}(B_c^+ to psi(2S)pi^+)}{mathcal{B}(B_c^+ to J/psipi^+)} = 0.250 pm 0.068 ,text{stat} pm 0.014 ,text{syst} pm 0.006 ,(mathcal{B}). end{equation*} The last term is the uncertainty on the ratio $mathcal{B}(psi(2S) to mu^+mu^-)/mathcal{B}(J/psi to mu^+mu^-)$.
A search for the decays of the $B_c^+$ meson to $pbar ppi^+$ is performed for the first time using a data sample corresponding to an integrated luminosity of 3.0 $mathrm{fb}^{-1}$ collected by the LHCb experiment in $pp$ collisions at centre-of-mass energies of $7$ and $8$ TeV. No signal is found and an upper limit, at 95% confidence level, is set, $frac{f_c}{f_u}timesmathcal{B}(B_c^+to pbar ppi^+)<3.6times10^{-8}$ in the kinematic region $m(pbar p)<2.85mathrm{,Gekern -0.1em V!/}c^2$, $p_{rm T}(B)<20mathrm{,Gekern -0.1em V!/}c$ and $2.0<y(B)<4.5$, where $mathcal{B}$ is the branching fraction and $f_c$ ($f_u$) is the fragmentation fraction of the $b$ quark into a $B_c^+$ ($B^+$) meson.