Do you want to publish a course? Click here

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

142   0   0.0 ( 0 )
 Added by Aya Ishihara
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 pm 0.3) times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 pm 2.0) times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of the limited deposited energy and the non-observation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and $gamma$-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models.

rate research

Read More

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $pm$ 0.16 and 1.14 $pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $ u_{e,mu,tau}$ ($bar u_{e,mu,tau}$) or charged-current $ u_{e}$ ($bar u_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 pm 0.004 text{(stat)}^{+0.041}_{-0.057} text{(syst)}$. The probability to observe two or more candidate events under the atmospheric background-only hypothesis is $2.9times10^{-3}$ ($2.8sigma$) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux, the moderate significance, however, does not permit a definitive conclusion at this time.
Ultra-luminous infrared galaxies (ULIRGs) have infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star-formation rates that exceed $100~ M_{odot}~ mathrm{yr}^{-1}$, possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift $z leq 0.13$ using 7.5 years of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken $E^{-2.5}$ power-law spectrum, we report an upper limit on the stacked flux $Phi_{ u_mu + bar{ u}_mu}^{90%} = 3.24 times 10^{-14}~ mathrm{TeV^{-1}~ cm^{-2}~ s^{-1}}~ (E/10~ mathrm{TeV})^{-2.5}$ at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.
The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh-energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ~10^18 eV, where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.
With infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. They are predominantly powered by starburst regions with star-formation rates $gtrsim 100~ M_{odot}~ mathrm{yr^{-1}}$. ULIRGs can also host an active galactic nucleus (AGN). Both the starburst and AGN environments contain plausible hadronic accelerators, making ULIRGs candidate neutrino sources. We present the results of an IceCube stacking analysis searching for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift $z leq 0.13$. While no significant excess of ULIRG neutrinos is found in 7.5 years of IceCube data, upper limits are reported on the neutrino flux from these 75 ULIRGs as well as an extrapolation for the full ULIRG source population. In addition, constraints are provided on models predicting neutrino emission from ULIRGs.
Magnetars are neutron stars with very strong magnetic fields on the order of $10^{13}$ to $10^{15}$ G. Young magnetars with oppositely-oriented magnetic fields and spin moments may emit high-energy (HE) neutrinos from their polar caps as they may be able to accelerate cosmic rays to above the photomeson threshold (Zhang et al. 2003). Giant flares of soft gamma-ray repeaters (a subclass of magnetars) may also produce HE neutrinos and therefore a HE neutrino flux from this class is potentially detectable (Ioka et al. 2005). Here we present plans to search for neutrino emission from magnetars listed in the McGill Online Magnetar Catalog using 10 years of well-reconstructed IceCube muon-neutrino events looking for significant clustering around magnetars direction. IceCube is a cubic kilometer neutrino observatory at the South Pole and has been fully operational for the past ten years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا