No Arabic abstract
In this paper, we study PUSH-PULL style rumor spreading algorithms in the mobile telephone model, a variant of the classical telephone model in which each node can participate in at most one connection per round; i.e., you can no longer have multiple nodes pull information from the same source in a single round. Our model also includes two new parameterized generalizations: (1) the network topology can undergo a bounded rate of change (for a parameterized rate that spans from no changes to changes in every round); and (2) in each round, each node can advertise a bounded amount of information to all of its neighbors before connection decisions are made (for a parameterized number of bits that spans from no advertisement to large advertisements). We prove that in the mobile telephone model with no advertisements and no topology changes, PUSH-PULL style algorithms perform poorly with respect to a graphs vertex expansion and graph conductance as compared to the known tight results in the classical telephone model. We then prove, however, that if nodes are allowed to advertise a single bit in each round, a natural variation of PUSH-PULL terminates in time that matches (within logarithmic factors) this strategys performance in the classical telephone model---even in the presence of frequent topology changes. We also analyze how the performance of this algorithm degrades as the rate of change increases toward the maximum possible amount. We argue that our model matches well the properties of emerging peer-to-peer communication standards for mobile devices, and that our efficient PUSH-PULL variation that leverages small advertisements and adapts well to topology changes is a good choice for rumor spreading in this increasingly important setting.
We study the problem of randomized information dissemination in networks. We compare the now standard PUSH-PULL protocol, with agent-based alternatives where information is disseminated by a collection of agents performing independent random walks. In the VISIT-EXCHANGE protocol, both nodes and agents store information, and each time an agent visits a node, the two exchange all the information they have. In the MEET-EXCHANGE protocol, only the agents store information, and exchange their information with each agent they meet. We consider the broadcast time of a single piece of information in an $n$-node graph for the above three protocols, assuming a linear number of agents that start from the stationary distribution. We observe that there are graphs on which the agent-based protocols are significantly faster than PUSH-PULL, and graphs where the converse is true. We attribute the good performance of agent-based algorithms to their inherently fair bandwidth utilization, and conclude that, in certain settings, agent-based information dissemination, separately or in combination with PUSH-PULL, can significantly improve the broadcast time. The graphs considered above are highly non-regular. Our main technical result is that on any regular graph of at least logarithmic degree, PUSH-PULL and VISIT-EXCHANGE have the same asymptotic broadcast time. The proof uses a novel coupling argument which relates the random choices of vertices in PUSH-PULL with the random walks in VISIT-EXCHANGE. Further, we show that the broadcast time of MEET-EXCHANGE is asymptotically at least as large as the other twos on all regular graphs, and strictly larger on some regular graphs. As far as we know, this is the first systematic and thorough comparison of the running times of these very natural information dissemination protocols.
We study the design of schedules for multi-commodity multicast; we are given an undirected graph $G$ and a collection of source destination pairs, and the goal is to schedule a minimum-length sequence of matchings that connects every source with its respective destination. Multi-commodity multicast models a classic information dissemination problem in networks where the primary communication constraint is the number of connections that a node can make, not link bandwidth. Multi-commodity multicast is closely related to the problem of finding a subgraph, $H$, of optimal poise, where the poise is defined as the sum of the maximum degree of $H$ and the maximum distance between any source-destination pair in $H$. We first show that the minimum poise subgraph for single-commodity multicast can be approximated to within a factor of $O(log k)$ with respect to the value of a natural LP relaxation in an instance with $k$ terminals. This is the first upper bound on the integrality gap of the natural LP. Using this poise result and shortest-path separators in planar graphs, we obtain a $O(log^3 klog n/(loglog n))$-approximation for multi-commodity multicast for planar graphs. We also study the minimum-time radio gossip problem in planar graphs where a message from each node must be transmitted to all other nodes under a model where nodes can broadcast to all neighbors in a single step but only nodes with a single broadcasting neighbor get a message. We give an $O(log^2 n)$-approximation for radio gossip in planar graphs breaking previous barriers. This is the first bound for radio gossip that does not rely on the maximum degree of the graph. Finally, we show that our techniques for planar graphs extend to graphs with excluded minors. We establish polylogarithmic-approximation algorithms for both multi-commodity multicast and radio gossip problems in minor-free graphs.
Motivated by storage applications, we study the following data structure problem: An encoder wishes to store a collection of jointly-distributed files $overline{X}:=(X_1,X_2,ldots, X_n) sim mu$ which are emph{correlated} ($H_mu(overline{X}) ll sum_i H_mu(X_i)$), using as little (expected) memory as possible, such that each individual file $X_i$ can be recovered quickly with few (ideally constant) memory accesses. In the case of independent random files, a dramatic result by Pat (FOCS08) and subsequently by Dodis, Pat and Thorup (STOC10) shows that it is possible to store $overline{X}$ using just a emph{constant} number of extra bits beyond the information-theoretic minimum space, while at the same time decoding each $X_i$ in constant time. However, in the (realistic) case where the files are correlated, much weaker results are known, requiring at least $Omega(n/polylg n)$ extra bits for constant decoding time, even for simple joint distributions $mu$. We focus on the natural case of compressingemph{Markov chains}, i.e., storing a length-$n$ random walk on any (possibly directed) graph $G$. Denoting by $kappa(G,n)$ the number of length-$n$ walks on $G$, we show that there is a succinct data structure storing a random walk using $lg_2 kappa(G,n) + O(lg n)$ bits of space, such that any vertex along the walk can be decoded in $O(1)$ time on a word-RAM. For the harder task of matching the emph{point-wise} optimal space of the walk, i.e., the empirical entropy $sum_{i=1}^{n-1} lg (deg(v_i))$, we present a data structure with $O(1)$ extra bits at the price of $O(lg n)$ decoding time, and show that any improvement on this would lead to an improved solution on the long-standing Dictionary problem. All of our data structures support the emph{online} version of the problem with constant update and query time.
Social network is a main tunnel of rumor spreading. Previous studies are concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first 6 mouth-to-mouth transmissions cite{TPR}. Based on the facts, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to its neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multi-revised version of the rumor, if the modifiers dominate the networks. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.
We introduce the {Destructive Object Handling} (DOH) problem, which models aspects of many real-world allocation problems, such as shipping explosive munitions, scheduling processes in a cluster with fragile nodes, re-using passwords across multiple websites, and quarantining patients during a disease outbreak. In these problems, objects must be assigned to handlers, but each object has a probability of destroying itself and all the other objects allocated to the same handler. The goal is to maximize the expected value of the objects handled successfully. We show that finding the optimal allocation is $mathsf{NP}$-$mathsf{complete}$, even if all the handlers are identical. We present an FPTAS when the number of handlers is constant. We note in passing that the same technique also yields a first FPTAS for the weapons-target allocation problem cite{manne_wta} with a constant number of targets. We study the structure of DOH problems and find that they have a sort of phase transition -- in some instances it is better to spread risk evenly among the handlers, in others, one handler should be used as a ``sacrificial lamb. We show that the problem is solvable in polynomial time if the destruction probabilities depend only on the handler to which an object is assigned; if all the handlers are identical and the objects all have the same value; or if each handler can be assigned at most one object. Finally, we empirically evaluate several heuristics based on a combination of greedy and genetic algorithms. The proposed heuristics return fairly high quality solutions to very large problem instances (upto 250 objects and 100 handlers) in tens of seconds.