Do you want to publish a course? Click here

The freedom to choose neutron star magnetic field equilibria

69   0   0.0 ( 0 )
 Added by Kostas Glampedakis
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our ability to interpret and glean useful information from the large body of observations of strongly magnetised neutron stars rests largely on our theoretical understanding of magnetic field equilibria. We answer the following question: is one free to arbitrarily prescribe magnetic equilibria such that fluid degrees of freedom can balance the equilibrium equations? We examine this question for various models for neutron star matter; from the simplest single-fluid barotrope to more realistic non-barotropic multifluid models with superfluid/superconducting components, muons and entropy. We do this for both axi- and non-axisymmetric equilibria, and in Newtonian gravity and general relativity. We show that, in axisymmetry, the most realistic model allows complete freedom in choosing a magnetic field equilibrium whereas non-axisymmetric equilibria are never completely arbitrary.

rate research

Read More

100 - J.G. Elfritz , J.A. Pons , N. Rea 2015
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in principle permit a deeper understanding of the most important parameters driving their apparent variety, e.g. radio pulsars, magnetars, x-ray dim isolated neutron stars, gamma-ray pulsars. We describe, for the first time, the results from self-consistent magneto-thermal simulations considering not only the effects of the Hall-driven field dissipation in the crust, but adding a complete set of proposed driving forces in a superconducting core. We emphasize how each of these core-field processes drive magnetic evolution and affect observables, and show that when all forces are considered together in vectorial form, the net expulsion of core magnetic flux is negligible, and will have no observable effect in the crust (consequently in the observed surface emission) on megayear time-scales. Our new simulations suggest that strong magnetic fields in NS cores (and the signatures on the NS surface) will persist long after the crustal magnetic field has evolved and decayed, due to the weak combined effects of dissipation and expulsion in the stellar core.
In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which Ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are Hall equilibria, i.e., field configurations that are unaffected by Hall drift. Here, we address the crucial question of the stability of these equilibria through axially symmetric (2D) numerical simulations of Hall drift and Ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D-stability of a purely poloidal equilibrium, for which Ohmic dissipation makes the field evolve towards an attractor state through adjacent stable configurations, around which damped oscillations occur. For this field, the decay scales with the Ohmic timescale. We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations superimposed on a slow evolution towards an attractor, just as the purely poloidal one.
We present solutions for Hall equilibria applicable to neutron star crusts. Such magnetic configurations satisfy a Grad-Shafranov-type equation, which is solved analytically and numerically. The solutions presented cover a variety of configurations, from purely poloidal fields connected to an external dipole to poloidal-toroidal fields connected to an external vacuum field, or fully confined within the star. We find that a dipole external field should be supported by a uniformly rotating electron fluid. The energy of the toroidal magnetic field is generally found to be a few percent of the total magnetic field energy for the fields with an external component. We discuss the evolution due to Ohmic dissipation which leads to slowing down of the electron fluid. We also find that the transition from an MHD equilibrium to a state governed by Hall effect, generates spontaneously an additional toroidal field in regions where the electron fraction changes.
In order to study precession and interstellar magnetic field variations, we measured the polarized position angle of 81 pulsars at several-month intervals for four years. We show that the uncertainties in a single-epoch measurement of position angle is usually dominated by random pulse-to-pulse jitter of the polarized subpulses. Even with these uncertainties, we find that the position angle variations in 19 pulsars are significantly better fitted (at the 3 {sigma} level) by a sinusoid than by a constant. Such variations could be caused by precession, which would then indicate periods of ~ (200 - 1300) d and amplitudes of ~(1 - 12) degrees. We narrow this collection to four pulsars that show the most convincing evidence of sinusoidal variation in position angle. Also, in a handful of pulsars, single discrepant position angle measurements are observed which may result from the line of sight passing across a discrete ionized, magnetized structure. We calculate the standard deviation of position angle measurements from the mean for each pulsar, and relate these to limits on precession and interstellar magnetic field variations.
We derive an equation of state for magnetized charge neutral nuclear matter relevant for neutron star structure. The calculations are performed within an effective chiral model based on generalization of sigma model with nonlinear self interactions of the sigma mesons along with vector mesons and a $rho-sigma$ cross-coupling term. The effective chiral model is extended by introducing the contributions of strong magnetic field on the charged particles of the model. The contributions arising from the effects of magnetic field on the Dirac sea of charged baryons are also included. The resulting equation of state for the magnetized dense matter is used to investigate the neutron star properties, like, mass-radius relation and tidal deformability. The dimensionless tidal deformability of $1.4~{M}_odot$ NS is found to be $Lambda_{1.4}=526$, which is consistent with recent observation of GW170817. The maximum mass of neutron star in presence of strong magnetic field is consistent with the observational constraints on mass of neutron star from PSR~ J0348 - 0432 and the radius at $1.4~{M}_odot$ mass of the neutron star is within the empirical bounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا