Do you want to publish a course? Click here

Scaling of Information in Turbulence

62   0   0.0 ( 0 )
 Added by Nicolas Garnier
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new perspective on Turbulence using Information Theory. We compute the entropy rate of a turbulent velocity signal and we particularly focus on its dependence on the scale. We first report how the entropy rate is able to describe the distribution of information amongst scales, and how one can use it to isolate the injection, inertial and dissipative ranges, in perfect agreement with the Batchelor model and with a fBM model. In a second stage, we design a conditioning procedure in order to finely probe the asymmetries in the statistics that are responsible for the energy cascade. Our approach is very generic and can be applied to any multiscale complex system.



rate research

Read More

For generic systems exhibiting power law behaviors, and hence multiscale dependencies, we propose a new, and yet simple, tool to analyze multifractality and intermittency, after noticing that these concepts are directly related to the deformation of a probability density function from Gaussian at large scales to non-Gaussian at smaller scales. Our framework is based on information theory, and uses Shannon entropy and Kullback-Leibler divergence. We propose an extensive application to three-dimensional fully developed turbulence, seen here as a paradigmatic complex system where intermittency was historically defined. Moreover, the concepts of scale invariance and multifractality were extensively studied in this field and, most importantly, benchmarked. We compute our measure on experimental Eulerian velocity measurements, as well as on synthetic processes and a phenomenological model of fluid turbulence.Our approach is very general and does not require any underlying model of the system, although it can probe the relevance of such a model.
The theoretical basis for a candidate variational principle for the information bottleneck (IB) method is formulated within the ambit of the generalized nonadditive statistics of Tsallis. Given a nonadditivity parameter $ q $, the role of the textit{additive duality} of nonadditive statistics ($ q^*=2-q $) in relating Tsallis entropies for ranges of the nonadditivity parameter $ q < 1 $ and $ q > 1 $ is described. Defining $ X $, $ tilde X $, and $ Y $ to be the source alphabet, the compressed reproduction alphabet, and, the textit{relevance variable} respectively, it is demonstrated that minimization of a generalized IB (gIB) Lagrangian defined in terms of the nonadditivity parameter $ q^* $ self-consistently yields the textit{nonadditive effective distortion measure} to be the textit{$ q $-deformed} generalized Kullback-Leibler divergence: $ D_{K-L}^{q}[p(Y|X)||p(Y|tilde X)] $. This result is achieved without enforcing any textit{a-priori} assumptions. Next, it is proven that the $q^*-deformed $ nonadditive free energy of the system is non-negative and convex. Finally, the update equations for the gIB method are derived. These results generalize critical features of the IB method to the case of Tsallis statistics.
The impact of adiabatic electrons on drift-wave turbulence, modelled by the Hasegawa-Wakatani equations, is studied using information length. Information length is a novel theoretical method for measuring distances between statistical states represented by different probability distribution functions (PDFs) along the path of a system. Specifically, the time-dependent PDFs of turbulent fluctuations for a given adiabatic index $A$ is computed. The changes in fluctuation statistics are then quantified in time by using information length. The numerical results provide time traces exhibiting intermittent plasma dynamics, and such behaviour is identified by a rapid change in the information length. The effects of $A$ are discussed.
81 - Renat Yulmetyev 2000
In this paper we present the concept of description of random processes in complex systems with the discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCF). We have introduced the dynamic (time dependent) information Shannon entropy $S_i(t)$ where i=0,1,2,3,... as an information measure of stochastic dynamics of time correlation $(i=0)$ and time memory (i=1,2,3,...). The set of functions $S_i(t)$ constitute the quantitative measure of time correlation disorder $(i=0)$ and time memory disorder (i=1,2,3,...) in complex system. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCF and memory function.The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR-intervals from human ECGs shows convincing evidence for a non-Markovian phenomemena associated with a peculiarities in short and long-range scaling. This method may be of use in distinguishing healthy from pathologic data sets based in differences in these non-Markovian properties.
Levy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in the micro and macro dynamics. From the perspective of random walk theory, here we investigate the dynamics of Levy walks under the influences of the constant force field and the one combined with harmonic potential. Utilizing Hermite polynomial approximation to deal with the spatiotemporally coupled analysis challenges, some striking features are detected, including non Gaussian stationary distribution, faster diffusion, and still strongly anomalous diffusion, etc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا