No Arabic abstract
The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a novel protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hidden sources of noise. Our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.
We present the results of the first photonic implementation of a new method for quantum process tomography. The method (originally presented by A. Bendersky et al, Phys. Rev. Lett 100, 190403 (2008)) enables the estimation of any element of the chi-matrix that characterizes a quantum process using resources that scale polynomially with the number of qubits. It is based on the idea of mapping the estimation of any chi-matrix element onto the average fidelity of a quantum channel and estimating the latter by sampling randomly over a special set of states called a 2-design. With a heralded single photon source we fully implement such algorithm and perform process tomography on a number of channels affecting the polarization qubit. The method is compared with other existing ones and its advantages are discussed.
We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a $d$-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only $O(d^2)$ interactive observables, as opposed to the $O(d^4)$ required for tomography of arbitrary channels. This result generalizes, so that channels with at most $q$ Kraus operators can be identified with only $O(qd^2)$ interactive observables. Slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with $q$ Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.
Several methods, known as Quantum Process Tomography, are available to characterize the evolution of quantum systems, a task of crucial importance. However, their complexity dramatically increases with the size of the system. Here we present the theory describing a new type of method for quantum process tomography. We describe an algorithm that can be used to selectively estimate any parameter characterizing a quantum process. Unlike any of its predecessors this new quantum tomographer combines two main virtues: it requires investing a number of physical resources scaling polynomially with the number of qubits and at the same time it does not require any ancillary resources. We present the results of the first photonic implementation of this quantum device, characterizing quantum processes affecting two qubits encoded in heralded single photons. Even for this small system our method displays clear advantages over the other existing ones.
Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular implementations of e.g. the controlled-NOT gate [1,2], but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) [3,4] to fully characterize the performance of a universal entangling gate between two superconducting quantum bits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction, and simultaneous single-shot measurement of the output states. We use QPT to measure the fidelity of the entangling gate and to quantify the decoherence mechanisms affecting the gate performance. In addition to demonstrating a promising fidelity, our entangling gate has a on/off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as solid-state process tomography has previously only been demonstrated with single qubits [5,6].
We consider realistic measurement systems, where measurements are accompanied by decoherence processes. The aim of this work is the construction of methods and algorithms for precise quantum measurements with fidelity close to the fundamental limit. In the present work the notions of ideal and non-ideal quantum measurements are strictly formalized. It is shown that non-ideal quantum measurements could be represented as a mixture of ideal measurements. Based on root approach the quantum state reconstruction method is developed. Informational accuracy theory of non-ideal quantum measurements is proposed. The monitoring of the amount of information about the quantum state parameters is examined, including the analysis of the information degradation under the noise influence. The study of achievable fidelity in non-ideal quantum measurements is performed. The results of simulation of fidelity characteristics of a wide class of quantum protocols based on polyhedrons geometry with high level of symmetry are presented. The impact of different decoherence mechanisms, including qubit amplitude and phase relaxation, bit-flip and phase-flip, is considered.