Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene


Abstract in English

Twisted bilayer graphene (TwBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moir{e} physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TwBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov-de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moir{e} wavevector.

Download