This paper describes a study of the self-sustaining process in wall-turbulence based on a second order statistical state dynamics (SSD) model of Couette flow. SSD models with this form are referred to as S3T models and self-sustain turbulence with a mean flow and second order perturbation structure similar to that obtained by DNS. The use of a SSD model to study the physical mechanisms underlying turbulence has advantages over the traditional approach of studying the dynamics of individual realizations of turbulence. One advantage is that the analytical structure of SSD isolates and directly expresses the interaction between the coherent mean flow and the incoherent perturbation components of the turbulence. Isolation of the interaction between these components reveals how this interaction underlies both the maintenance of the turbulence variance by transfer of energy from the externally driven flow to the perturbation components as well as the enforcement of the observed statistical mean turbulent state by feedback regulation between the mean and perturbation fields. Another advantage of studying turbulence using SSD models is that the analytical structure of S3T turbulence can be completely characterized. For example, turbulence in the S3T system is maintained by a parametric growth mechanism. Furthermore, the equilibrium statistical state of the turbulence can be demonstrated to be enforced by feedback regulation in which transient growth of the incoherent perturbations episodically suppresses coherent streak growth preventing runaway parametric growth of the incoherent turbulent component. Using S3T to isolate these parametric growth and feedback regulation mechanisms allows a detailed characterization of the dynamics of the self-sustaining process in S3T turbulence with compelling implications for understanding the mechanism of wall-turbulence.