No Arabic abstract
A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of these processes generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedia editing records to unravel some features of this phenomenon. We show that even though the probability to start editing is conditioned by the circadian 24 hour cycle, the conditional probability for the time interval between successive edits at a given time of the day is independent from the latter. We confirm our findings with the activity of posting on the social network Twitter. Our result suggests there is an intrinsic humankind scheduling pattern: after overcoming the encumbrance to start an activity, there is a robust distribution of new related actions, which does not depend on the time of day.
Intervals between discrete events representing human activities, as well as other types of events, often obey heavy-tailed distributions, and their impacts on collective dynamics on networks such as contagion processes have been intensively studied. The literature supports that such heavy-tailed distributions are present for inter-event times associated with both individual nodes and individual edges in networks. However, the simultaneous presence of heavy-tailed distributions of inter-event times for nodes and edges is a non-trivial phenomenon, and its origin has been elusive. In the present study, we propose a generative model and its variants to explain this phenomenon. We assume that each node independently transits between a high-activity and low-activity state according to a continuous-time two-state Markov process and that, for the main model, events on an edge occur at a high rate if and only if both end nodes of the edge are in the high-activity state. In other words, two nodes interact frequently only when both nodes prefer to interact with others. The model produces distributions of inter-event times for both individual nodes and edges that resemble heavy-tailed distributions across some scales. It also produces positive correlation in consecutive inter-event times, which is another stylized observation for empirical data of human activity. We expect that our modeling framework provides a useful benchmark for investigating dynamics on temporal networks driven by non-Poissonian event sequences.
We report an empirical determination of the probability density functions $P_{text{data}}(r)$ of the number $r$ of earthquakes in finite space-time windows for the California catalog. We find a stable power law tail $P_{text{data}}(r) sim 1/r^{1+mu}$ with exponent $mu approx 1.6$ for all space ($5 times 5$ to $20 times 20$ km$^2$) and time intervals (0.1 to 1000 days). These observations, as well as the non-universal dependence on space-time windows for all different space-time windows simultaneously, are explained by solving one of the most used reference model in seismology (ETAS), which assumes that each earthquake can trigger other earthquakes. The data imposes that active seismic regions are Cauchy-like fractals, whose exponent $delta =0.1 pm 0.1$ is well-constrained by the seismic rate data.
We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
While frameworks based on physical grounds (like the Drift-Diffusion Model) have been exhaustively used in psychology and neuroscience to describe perceptual decision-making in humans, analogous approaches for more complex situations like sequential (tree-like) decision making are still absent. For such scenarios, which involve a reflective prospection of future options to reach a decision, we offer a plausible mechanism based on the internal computation of the Shannons entropy for the different options available to the subjects. When a threshold in the entropy is reached this will trigger the decision, which means that the amount of information that has been gathered through sensory evidence is enough to assess the options accurately. Experimental evidence in favour of this mechanism is provided by exploring human performances during navigation through a maze on the computer screen monitored with the help of eye-trackers. In particular, our analysis allows us to prove that: (i) prospection is effectively being used by humans during such navigation tasks, and a quantification of the level of prospection used is attainable, (ii) the distribution of decision times during the task exhibits power-law tails, a feature that our entropy-based mechanism is able to explain, in contrast to classical decision-making frameworks.
A proof of the relativistic $H$-theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the q-parameter lies on the interval [0,2]. It is also proved that the collisional equilibrium states (null entropy source term) are described by the relativistic $q$-power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field $F^{{mu u}}$. Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory.