Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles


Abstract in English

We propose a new method to search for hypothetical scalar particles that have feeble interactions with Standard-Model particles. In the presence of massive bodies, these interactions produce a non-zero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales $ > 10$ cm. In the limit as the scalar-particle mass $m_phi to 0$, our derived limits on the Yukawa-type interaction parameters are: $Lambda_gamma gtrsim 8 times 10^{19}$ GeV, $Lambda_e gtrsim 1.3 times 10^{19}$ GeV, and $Lambda_N gtrsim 6 times 10^{20}$ GeV. Our measurements also constrain combinations of interaction parameters, which cannot otherwise be probed with traditional anomalous-force measurements. We suggest further measurements to improve on the current level of sensitivity.

Download