No Arabic abstract
Tail dependence refers to clustering of extreme events. In the context of financial risk management, the clustering of high-severity risks has a devastating effect on the well-being of firms and is thus of pivotal importance in risk analysis.When it comes to quantifying the extent of tail dependence, it is generally agreed that measures of tail dependence must be independent of the marginal distributions of the risks but rather solely copula-dependent. Indeed, all classical measures of tail dependence are such, but they investigate the amount of tail dependence along the main diagonal of copulas, which has often little in common with the concentration of extremes in the copulas domain of definition.In this paper we urge that the classical measures of tail dependence may underestimate the level of tail dependence in copulas. For the Gaussian copula, however, we prove that the classical measures are maximal. The implication of the result is two-fold: On the one hand, it means that in the Gaussian case, the (weak) measures of tail dependence that have been reported and used are of utmost prudence, which must be a reassuring news for practitioners. On the other hand, it further encourages substitution of the Gaussian copula with other copulas that are more tail dependent.
Measures of tail dependence between random variables aim to numerically quantify the degree of association between their extreme realizations. Existing tail dependence coefficients (TDCs) are based on an asymptotic analysis of relevant conditional probabilities, and do not provide a complete framework in which to compare extreme dependence between two random variables. In fact, for many important classes of bivariate distributions, these coefficients take on non-informative boundary values. We propose a new approach by first considering global measures based on the surface area of the conditional cumulative probability in copula space, normalized with respect to departures from independence and scaled by the difference between the two boundary copulas of co-monotonicity and counter-monotonicity. The measures could be approached by cumulating probability on either the lower left or upper right domain of the copula space, and offer the novel perspective of being able to differentiate asymmetric dependence with respect to direction of conditioning. The resulting TDCs produce a smoother and more refined taxonomy of tail dependence. The empirical performance of the measures is examined in a simulated data context, and illustrated through a case study examining tail dependence between stock indices.
We present results on the estimation and evaluation of success probabilities for ordinal optimisation over uncountable sets (such as subsets of $mathbb{R}^{d}$). Our formulation invokes an assumption of a Gaussian copula model, and we show that the success probability can be equivalently computed by assuming a special case of additive noise. We formally prove a lower bound on the success probability under the Gaussian copula model, and numerical experiments demonstrate that the lower bound yields a reasonable approximation to the actual success probability. Lastly, we showcase the utility of our results by guaranteeing high success probabilities with ordinal optimisation.
Dependence strucuture estimation is one of the important problems in machine learning domain and has many applications in different scientific areas. In this paper, a theoretical framework for such estimation based on copula and copula entropy -- the probabilistic theory of representation and measurement of statistical dependence, is proposed. Graphical models are considered as a special case of the copula framework. A method of the framework for estimating maximum spanning copula is proposed. Due to copula, the method is irrelevant to the properties of individual variables, insensitive to outlier and able to deal with non-Gaussianity. Experiments on both simulated data and real dataset demonstrated the effectiveness of the proposed method.
Predicting the occurrence of tail events is of great importance in financial risk management. By employing the method of peak-over-threshold (POT) to identify the financial extremes, we perform a recurrence interval analysis (RIA) on these extremes. We find that the waiting time between consecutive extremes (recurrence interval) follow a $q$-exponential distribution and the sizes of extremes above the thresholds (exceeding size) conform to a generalized Pareto distribution. We also find that there is a significant correlation between recurrence intervals and exceeding sizes. We thus model the joint distribution of recurrence intervals and exceeding sizes through connecting the two corresponding marginal distributions with the Frank and AMH copula functions, and apply this joint distribution to estimate the hazard probability to observe another extreme in $Delta t$ time since the last extreme happened $t$ time ago. Furthermore, an extreme predicting model based on RIA-EVT-Copula is proposed by applying a decision-making algorithm on the hazard probability. Both in-sample and out-of-sample tests reveal that this new extreme forecasting framework has better performance in prediction comparing with the forecasting model based on the hazard probability only estimated from the distribution of recurrence intervals. Our results not only shed a new light on understanding the occurring pattern of extremes in financial markets, but also improve the accuracy to predict financial extremes for risk management.
We give a new $q$-$(1+q)$-analogue of the Gaussian coefficient, also known as the $q$-binomial which, like the original $q$-binomial $genfrac{[}{]}{0pt}{}{n}{k}_{q}$, is symmetric in $k$ and $n-k$. We show this $q$-$(1+q)$-binomial is more compact than the one discovered by Fu, Reiner, Stanton and Thiem. Underlying our $q$-$(1+q)$-analogue is a Boolean algebra decomposition of an associated poset. These ideas are extended to the Birkhoff transform of any finite poset. We end with a discussion of higher analogues of the $q$-binomial.