Do you want to publish a course? Click here

Improvements on non-equilibrium and transport Green function techniques: the next-generation transiesta

180   0   0.0 ( 0 )
 Added by Nick Ruebner Papior
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present novel methods implemented within the non-equilibrium Green function code (NEGF) transiesta based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes ($N_ege1$) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour opti- mizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallellization. Additionally, a generic NEGF post-processing code (tbtrans/phtrans) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, $N_ege1$ electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding $10^6$ atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.



rate research

Read More

We describe a method and its implementation for calculating electronic structure and electron transport without approximating the structure using periodic super-cells. This effectively removes spurious periodic images and interference effects. Our method is based on already established methods readily available in the non-equilibrium Green function formalism and allows for non-equilibrium transport. We present examples of a N defect in graphene, finite voltage bias transport in a point-contact to graphene, and a graphene-nanoribbon junction. This method is less costly, in terms of CPU-hours, than the super-cell approximation.
A local-orbital based ab initio approach to obtain the Green function for large heterogeneous systems is developed. First a Green function formalism is introduced based on exact diagonalization. Then the self energy is constructed from an incremental scheme, rendering the procedure feasible, while at the same time physical insight into different local correlation contributions is obtained. Subsequently the Green function is used in the frame of the Landauer theory and the wide band approximation to calculate the electronic transmission coefficient across molecular junctions. The theory is applied to meta- and para-ditholbenzene linked to gold electrodes and various correlation contributions are analyzed.
In this paper, we investigate theoretically the spin-orbit torque as well as the Gilbert damping for a two band model of a 2D helical surface state with a Ferromagnetic (FM) exchange coupling. We decompose the density matrix into the Fermi sea and Fermi surface components and obtain their contributions to the electronic transport as well as the spin-orbit torque (SOT). Furthermore, we obtain the expression for the Gilbert damping due to the surface state of a 3D Topological Insulator (TI) and predicted its dependence on the direction of the magnetization precession axis.
We report on non-equilibrium electronic transport through normal-metal (Cu) nanobridges coupled to large reservoirs at low temperatures. We observe a logarithmic temperature dependence of the zero-bias conductance, as well as a universal scaling behavior of the differential conductance. Our results are explained by electron-electron interactions in diffusive metals in the zero-dimensional limit.
Despite the ubiquity of applications of heat transport across nanoscale interfaces, including integrated circuits, thermoelectrics, and nanotheranostics, an accurate description of phonon transport in these systems remains elusive. Here we present a theoretical and computational framework to describe phonon transport with position, momentum and scattering event resolution. We apply this framework to a single material spherical nanoparticle for which the multidimensional resolution offers insight into the physical origin of phonon thermalization, and length-scale dependent anisotropy of steady-state phonon distributions. We extend the formalism to handle interfaces explicitly and investigate the specific case of semi-coherent materials interfaces by computing the coupling between phonons and interfacial strain resulting from aperiodic array of misfit dislocations. Our framework quantitatively describes the thermal interface resistance within the technologically relevant Si-Ge heterostructures. In future, this formalism could provide new insight into coherent and driven phonon effects in nanoscale materials increasingly accessible via ultrafast, THz and near-field spectroscopies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا