Simultaneous Measurement of Resistively and Optically Detected Nuclear Magnetic Resonance in the $ u=2/3$ Fractional Quantum Hall Regime


Abstract in English

We observe nuclear magnetic resonance (NMR) in the fractional quantum Hall regime at Landau level filling factor $ u=2/3$ from simultaneous measurement of longitudinal resistance and photoluminescence (PL). The dynamic nuclear spin polarization is induced by applying a huge electronic current at the spin phase transition point of $ u=2/3$. The NMR spectra obtained from changes in resistance and PL intensity are qualitatively the same; that is, the Knight shift (spin polarized region) and zero-shift (spin unpolarized region) resonances are observed in both. The observed change in PL intensity is interpreted as a consequence of the trion scattering induced by polarized nuclear spins. We conclude that both detection methods probe almost the same local phenomena.

Download