Do you want to publish a course? Click here

An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

134   0   0.0 ( 0 )
 Added by Matthieu Heller
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented mirror dish and an innovative fully digital camera based on silicon photo-multipliers (SiPMs). Since the SST sub-array will consist of up to 70 telescopes, the challenge is not only to build a telescope with excellent performance, but also to design it so that its components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the camera design and show that it is capable of matching the CTA requirements of operating up to high-moon-light background conditions.



rate research

Read More

Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design has a small plate scale which enables the use of compact photosensors. We present an extensive and detailed study of the two most promising devices being considered for this telescope design: the silicon photomultiplier and the multi-anode photomultiplier tube. We evaluated their most critical performance characteristics for imaging gamma-ray showers, and we present our results in a cohesive manner to clearly evaluate the advantages and disadvantages that both types of device have to offer in the context of GeV-TeV gamma-ray astronomy.
In October 2013, the Italian Ministry approved the funding of a Research & Development (R&D) study, within the Progetto Premiale TElescopi CHErenkov made in Italy (TECHE), devoted to the development of a demonstrator for a camera for the Cherenkov Telescope Array (CTA) consortium. The demonstrator consists of a sensor plane based on the Silicon Photomultiplier (SiPM) technology and on an electronics designed for signal sampling. Preliminary tests on a matrix of sensors produced by the Fondazione Bruno Kessler (FBK-Trento, Italy) and on electronic prototypes produced by SITAEL S.p.A. will be presented. In particular, we used different designs of the electronics in order to optimize the output signals in terms of tail cancellation. This is crucial for applications where a high background is expected, as for the CTA experiment.
We characterized the S14160-3050HS Multi-Pixel Photon Counter (MPPC), a high efficiency, single channel silicon photomultiplier manufactured by Hamamatsu Photonics K.K. All measurements were performed at a room temperature of (23.0 $pm$ 0.3) $^{circ}$C. We obtained an I-V curve and used relative derivatives to find a breakdown voltage of 38.88 V. At a 3 V over voltage, we find a dark count rate of 1.08 MHz, crosstalk probability of 21 $%$, photon detection efficiency of 55 $%$ at 450 nm, and saturation at 1.0x10$^{11}$ photons per second. The S14160-3050HS MPPC is a candidate detector for the Ultra-Fast Astronomy (UFA) telescope which will characterize the optical (320 nm - 650 nm) sky in the millisecond to sub-microsecond timescales using two photon counting arrays operated in coincidence on the 0.7 meter Nazarbayev University Transient Telescope at the Assy-Turgen Astrophysical Observatory (NUTTelA-TAO) located near Almaty, Kazakhstan. We discuss advantages and disadvantages of using the S14160-3050HS MPPC for the UFA telescope and future ground-based telescopes in sub-second time domain astrophysics.
The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong potential to become superior to the PMT one in terms of photon detection efficiency and price per square mm of detector area. While the advantage of SiPMs has been proven for high-density, small size cameras, it is yet to be demonstrated for large area cameras such as the one of the LST. We are working to develop a SiPM-based module for the LST camera, in view of a possible camera upgrade. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall LST camera design.
We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray (~0.4 - 10 MeV) detectors capable of making sensitive observations. A fast scintillator- based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits the rejection of background via time-of-flight (ToF) discrimination. The Solar Compton Telescope (SolCompT) prototype was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2 x 2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of ~240 nCi of Co-60 embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent ~3.75 hours at a float altitude of ~123,000 feet. The instrument performed well throughout the flight. After correcting for small (~10%) residual gain variations, we measured an in-flight ToF resolution of ~760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise for future gamma-ray instruments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا