Do you want to publish a course? Click here

Adiabatic optimization versus diffusion Monte Carlo

106   0   0.0 ( 0 )
 Added by Stephen Jordan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here, we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k-SAT at k=2,3,4.



rate research

Read More

The disiloxane molecule is a prime example of silicate compounds containing the Si-O-Si bridge. The molecule is of significant interest within the field of quantum chemistry, owing to the difficulty in theoretically predicting its properties. Herein, the linearisation barrier of disiloxane is investigated using a fixed-node diffusion Monte Carlo (FNDMC) approach, which is currently the most reliable {it ab initio} method in accounting for an electronic correlation. Calculations utilizing the density functional theory (DFT) and the coupled cluster method with single and double substitutions, including noniterative triples (CCSD(T))are carried out alongside FNDMC for comparison. Two families of basis sets are used to investigate the disiloxane linearisation barrier - Dunnings correlation-consistent basis sets cc-pV$x$Z ($x = $ D, T, and Q) and their core-valence correlated counterparts, cc-pCV$x$Z. It is concluded that FNDMC successfully predicts the disiloxane linearisation barrier and does not depend on the completeness of the basis sets as much as DFT or CCSD(T), thus establishing its suitability.
An identification is found between meta-learning and the problem of determining the ground state of a randomly generated Hamiltonian drawn from a known ensemble. A model-agnostic meta-learning approach is proposed to solve the associated learning problem and a preliminary experimental study of random Max-Cut problems indicates that the resulting Meta Variational Monte Carlo accelerates training and improves convergence.
213 - Julien Toulouse 2015
We provide a pedagogical introduction to the two main variants of real-space quantum Monte Carlo methods for electronic-structure calculations: variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). Assuming no prior knowledge on the subject, we review in depth the Metropolis-Hastings algorithm used in VMC for sampling the square of an approximate wave function, discussing details important for applications to electronic systems. We also review in detail the more sophisticated DMC algorithm within the fixed-node approximation, introduced to avoid the infamous Fermionic sign problem, which allows one to sample a more accurate approximation to the ground-state wave function. Throughout this review, we discuss the statistical methods used for evaluating expectation values and statistical uncertainties. In particular, we show how to estimate nonlinear functions of expectation values and their statistical uncertainties.
Several previous works have investigated the circumstances under which quantum adiabatic optimization algorithms can tunnel out of local energy minima that trap simulated annealing or other classical local search algorithms. Here we investigate the even more basic question of whether adiabatic optimization algorithms always succeed in polynomial time for trivial optimization problems in which there are no local energy minima other than the global minimum. Surprisingly, we find a counterexample in which the potential is a single basin on a graph, but the eigenvalue gap is exponentially small as a function of the number of vertices. In this counterexample, the ground state wavefunction consists of two lobes separated by a region of exponentially small amplitude. Conversely, we prove if the ground state wavefunction is single-peaked then the eigenvalue gap scales at worst as one over the square of the number of vertices.
Realistic image synthesis involves computing high-dimensional light transport integrals which in practice are numerically estimated using Monte Carlo integration. The error of this estimation manifests itself in the image as visually displeasing aliasing or noise. To ameliorate this, we develop a theoretical framework for optimizing screen-space error distribution. Our model is flexible and works for arbitrary target error power spectra. We focus on perceptual error optimization by leveraging models of the human visual systems (HVS) point spread function (PSF) from halftoning literature. This results in a specific optimization problem whose solution distributes the error as visually pleasing blue noise in image space. We develop a set of algorithms that provide a trade-off between quality and speed, showing substantial improvements over prior state of the art. We perform evaluations using both quantitative and perceptual error metrics to support our analysis, and provide extensive supplemental material to help evaluate the perceptual improvements achieved by our methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا