No Arabic abstract
We present deep imaging observations of activated asteroid P/2016 G1 (PANSTARRS) using the 10.4m Gran Telescopio Canarias (GTC) from late April to early June 2016. The images are best interpreted as the result of a relatively short-duration event with onset about $mathop{350}_{-30}^{+10}$ days before perihelion (i.e., around 10th February, 2016), starting sharply and decreasing with a $mathop{24}_{-7}^{+10}$ days (Half-width at half-maximum, HWHM). The results of the modeling imply the emission of $sim$1.7$times$10$^7$ kg of dust, if composed of particles of 1 micrometer to 1 cm in radius, distributed following a power-law of index --3, and having a geometric albedo of 0.15. A detailed fitting of a conspicuous westward feature in the head of the comet-like object indicates that a significant fraction of the dust was ejected along a privileged direction right at the beginning of the event, which suggests that the parent body has possibly suffered an impact followed by a partial or total disruption. From the limiting magnitude reachable with the instrumental setup, and assuming a geometric albedo of 0.15 for the parent body, an upper limit for the size of possible fragment debris of $sim$50 m in radius is derived.
After the early observations of the disrupted asteroid P/2016 G1 with the 10.4m Gran Telescopio Canarias (GTC), and the modeling of the dust ejecta, we have performed a follow-up observational campaign of this object using the Hubble Space Telescope (HST) during two epochs (June 28 and July 11, 2016). The analysis of these HST images with the same model inputs obtained from the GTC images revealed a good consistency with the predicted evolution from the GTC images, so that the model is applicable to the whole observational period from late April to early July 2016. This result confirms that the resulting dust ejecta was caused by a relatively short-duration event with onset about 350 days before perihelion, and spanning about 30 days (HWHM). For a size distribution of particles with a geometric albedo of 0.15, having radii limits of 1 $mu$m and 1 cm, and following a power-law with index --3.0, the total dust mass ejected is $sim$2$times$10$^7$ kg. As was the case with the GTC observations, no condensations in the images that could be attributed to a nucleus or fragments released after the disruption event were found. However, the higher limiting magnitude reachable with the HST images in comparison with those from GTC allowed us to impose a more stringent upper limit to the observed fragments of $sim$30 m.
We present deep imaging observations, orbital dynamics, and dust tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada-France-Hawaii Telescope (CFHT) from mid March to late July, 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely $sim$2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust tail models show that those two components became active simultaneously $sim$250 days before the current perihelion, with comparable maximum loss rates of $sim$0.7 kg s$^{-1}$ and $sim$0.5 kg s$^{-1}$, and total ejected masses of 8$times$10$^{6}$ kg and 6$times$10$^{6}$ kg for fragments J1-A and J1-B, respectively. In consequence, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6 to 9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.
We imaged Comet 252P/2000 G1 (LINEAR) (hereafter 252P) with the Hubble Space Telescope and both 252P and P/2016 BA$_{14}$ (PanSTARRS) (hereafter BA$_{14}$) with the Discovery Channel Telescope in March and April 2016, surrounding its close encounter to Earth. The r-band $Afrho$ of 252P in a 0.2-radius aperture were $16.8pm0.3$ and $57pm1$ cm on March 14 and April 4, respectively, and its gas production rates were: $Q$(OH) = $(5.8pm0.1)times10^{27}$ s$^{-1}$, and $Q$(CN) = $(1.25pm0.01)times10^{25}$ s$^{-1}$ on April 17. The r-band upper limit $Afrho$ of BA1$_{14}$ was $0.19pm0.01$ cm in a 19.2-radius aperture, and $Q$(CN) = $(1.4pm0.1)10^{22}$ s$^{-1}$ on April 17, 2017. 252P shows a bright and narrow jet of a few hundred kilometers long in the sunward direction, changing its projected position angle in the sky with a periodicity consistent with 7.24 hours. However, its photometric lightcurve is consistent with a periodicity of 5.41 hours. We suggest that the nucleus of 252P is likely in a non-principal axis rotation. The nucleus radius of 252P is estimated to be about $0.3pm0.03$ km, indicating an active fraction of 40% to >100% in its 2016 apparition. Evidence implies a possible cloud of slow-moving grains surrounding the nucleus. The activity level of 252P in the 2016 apparition increased by two orders of magnitude from its previous apparitions, making this apparition unusual. On the other hand, the activity level of BA14 appears to be at least three orders of magnitude lower than that of 252P, despite its ten times or larger surface area.
We present mid-infrared observations of comet P/2016 BA14 (PANSTARRS), which were obtained on UT 2016 March 21.3 at heliocentric and geocentric distances of 1.012 au and 0.026 au, respectively, approximately 30 hours before its closest approach to Earth (0.024 au) on UT 2016 March 22.6. Low-resolution ($lambda$/$Delta lambda$~250) spectroscopic observations in the N-band and imaging observations with four narrow-band filters (centered at 8.8, 12.4, 17.7 and 18.8 $mu$m) in the N- and Q-bands were obtained using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) mounted on the 8.2-m Subaru telescope atop Maunakea, Hawaii. The observed spatial profiles of P/2016 BA14 at different wavelengths are consistent with a point-spread function. Owing to the close approach of the comet to the Earth, the observed thermal emission from the comet is dominated by the thermal emission from its nucleus rather than its dust coma. The observed spectral energy distribution of the nucleus at mid-infrared wavelengths is consistent with a Planck function at temperature T~350 K, with the effective diameter of P/2016 BA14 estimated as ~0.8 km (by assuming an emissivity of 0.97). The normalized emissivity spectrum of the comet exhibits absorption-like features that are not reproduced by the anhydrous minerals typically found in cometary dust coma, such as olivine and pyroxene. Instead, the spectral features suggest the presence of large grains of phyllosilicate minerals and organic materials. Thus, our observations indicate that an inactive small body covered with these processed materials is a possible end state of comets.
We examine the development of the active asteroid 311P/PANSTARRS (formerly, 2013 P5) in the period from 2013 September to 2014 February using high resolution images from the Hubble Space Telescope. This multi-tailed object is characterized by a single, reddish nucleus of absolute magnitude $H ge$ 18.98$pm$0.10, corresponding to an equal-area sphere of radius $le$200$pm$20 m (for assumed geometric albedo 0.29$pm$0.09). We set an upper limit to the radii of possible companion nuclei at $sim$10 m. The nucleus ejected debris in nine discrete episodes, spread irregularly over a nine month interval, each time forming a distinct tail. Particles in the tails range from about 10 $mu$m to at least 80 mm in radius, and were ejected at speeds $<$1 m s$^{-1}$. The ratio of the total ejected dust mass to the nucleus mass is $sim$3$times$10$^{-5}$, corresponding to a global surface layer $sim$2 mm thick, or to a deeper layer covering a smaller fraction of the surface. The observations are incompatible with an origin of the activity by impact or by the sublimation of entrapped ice. This object appears to be shedding its regolith by rotational (presumably YORP-driven) instability. Long-term fading of the photometry (months) is attributed to gradual dissipation of near-nucleus dust. Photometric variations on short timescales ($<$0.7 hr) are probably caused by fast rotation of the nucleus. However, because of limited time coverage and dilution of the nucleus signal by near-nucleus dust, we have not been able to determine the rotation period.