Do you want to publish a course? Click here

Implicit Negative Feedback in Clinical Information Retrieval

352   0   0.0 ( 0 )
 Added by Lorenz Kuhn
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In this paper, we reflect on ways to improve the quality of bio-medical information retrieval by drawing implicit negative feedback from negated information in noisy natural language search queries. We begin by studying the extent to which negations occur in clinical texts and quantify their detrimental effect on retrieval performance. Subsequently, we present a number of query reformulation and ranking approaches that remedy these shortcomings by resolving natural language negations. Our experimental results are based on data collected in the course of the TREC Clinical Decision Support Track and show consistent improvements compared to state-of-the-art methods. Using our novel algorithms, we are able to reduce the negative impact of negations on early precision by up to 65%.



rate research

Read More

This paper describes PinView, a content-based image retrieval system that exploits implicit relevance feedback collected during a search session. PinView contains several novel methods to infer the intent of the user. From relevance feedback, such as eye movements or pointer clicks, and visual features of images, PinView learns a similarity metric between images which depends on the current interests of the user. It then retrieves images with a specialized online learning algorithm that balances the tradeoff between exploring new images and exploiting the already inferred interests of the user. We have integrated PinView to the content-based image retrieval system PicSOM, which enables applying PinView to real-world image databases. With the new algorithms PinView outperforms the original PicSOM, and in online experiments with real users the combination of implicit and explicit feedback gives the best results.
This study uses a novel simulation framework to evaluate whether the time and effort necessary to achieve high recall using active learning is reduced by presenting the reviewer with isolated sentences, as opposed to full documents, for relevance feedback. Under the weak assumption that more time and effort is required to review an entire document than a single sentence, simulation results indicate that the use of isolated sentences for relevance feedback can yield comparable accuracy and higher efficiency, relative to the state-of-the-art Baseline Model Implementation (BMI) of the AutoTAR Continuous Active Learning (CAL) method employed in the TREC 2015 and 2016 Total Recall Track.
In this work, we propose FM-Pair, an adaptation of Factorization Machines with a pairwise loss function, making them effective for datasets with implicit feedback. The optimization model in FM-Pair is based on the BPR (Bayesian Personalized Ranking) criterion, which is a well-established pairwise optimization model. FM-Pair retains the advantages of FMs on generality, expressiveness and performance and yet it can be used for datasets with implicit feedback. We also propose how to apply FM-Pair effectively on two collaborative filtering problems, namely, context-aware recommendation and cross-domain collaborative filtering. By performing experiments on different datasets with explicit or implicit feedback we empirically show that in most of the tested datasets, FM-Pair beats state-of-the-art learning-to-rank methods such as BPR-MF (BPR with Matrix Factorization model). We also show that FM-Pair is significantly more effective for ranking, compared to the standard FMs model. Moreover, we show that FM-Pair can utilize context or cross-domain information effectively as the accuracy of recommendations would always improve with the right auxiliary features. Finally we show that FM-Pair has a linear time complexity and scales linearly by exploiting additional features.
This paper proposes implicit CF-NADE, a neural autoregressive model for collaborative filtering tasks using implicit feedback ( e.g. click, watch, browse behaviors). We first convert a users implicit feedback into a like vector and a confidence vector, and then model the probability of the like vector, weighted by the confidence vector. The training objective of implicit CF-NADE is to maximize a weighted negative log-likelihood. We test the performance of implicit CF-NADE on a dataset collected from a popular digital TV streaming service. More specifically, in the experiments, we describe how to convert watch counts into implicit relative rating, and feed into implicit CF-NADE. Then we compare the performance of implicit CF-NADE model with the popular implicit matrix factorization approach. Experimental results show that implicit CF-NADE significantly outperforms the baseline.
The advent of deep machine learning platforms such as Tensorflow and Pytorch, developed in expressive high-level languages such as Python, have allowed more expressive representations of deep neural network architectures. We argue that such a powerful formalism is missing in information retrieval (IR), and propose a framework called PyTerrier that allows advanced retrieval pipelines to be expressed, and evaluated, in a declarative manner close to their conceptual design. Like the aforementioned frameworks that compile deep learning experiments into primitive GPU operations, our framework targets IR platforms as backends in order to execute and evaluate retrieval pipelines. Further, we can automatically optimise the retrieval pipelines to increase their efficiency to suite a particular IR platform backend. Our experiments, conducted on TREC Robust and ClueWeb09 test collections, demonstrate the efficiency benefits of these optimisations for retrieval pipelines involving both the Anserini and Terrier IR platforms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا