No Arabic abstract
Quantum teleportation, the process by which Alice can transfer an unknown quantum state to Bob by using pre-shared entanglement and classical communication, is one of the cornerstones of quantum information. The standard benchmark for certifying quantum teleportation consists in surpassing the maximum average fidelity between the teleported and the target states that can be achieved classically. According to this figure of merit, not all entangled states are useful for teleportation. Here we propose a new benchmark that uses the full information available in a teleportation experiment and prove that all entangled states can implement a quantum channel which can not be reproduced classically. We introduce the idea of non-classical teleportation witness to certify if a teleportation experiment is genuinely quantum and discuss how to quantify this phenomenon. Our work provides new techniques for studying teleportation that can be immediately applied to certify the quality of quantum technologies.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information processing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrodinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, a) the fidelity, and b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output.
In this paper we propose a scheme for partially teleporting entangled atomic states. Our scheme can be implemented using only four two-level atoms interacting either resonantly or off-resonantly with a single cavity-QED. The estimative of losses occurring during this partial teleportation process is accomplished through the phenomenological operator approach technique.
We propose a protocol of the long-distance atomic state teleportation via cavity decay, which allows for high-fidelity teleportation even with currently available optical cavities. The protocol is based on the scheme proposed by Bose emph{et al.} [Phys. Rev. Lett. {textbf{83}}, 5158 (1999)] but with one important modification: it employs non-maximally-entangled states instead of maximally entangled states.
Quantum discord quantifies non-classical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whole Hilbert space: typically a state picked out at random has positive discord; and, given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These results hold for any Hilbert-space dimension, and have direct implications on quantum computation and on the foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot lead to a sudden, permanent vanishing of discord.
We study quantum teleportation with the resource of non-orthogonal qubit states. We first extend the standard teleportation protocol to the case of such states. We investigate how the loss of teleportation fidelity resulting for the use of non-orthogonal states compares to a similar loss of fidelity when noisy or non-maximally entangled states as used as teleportation resource. Our analysis leads to certain interesting results on the teleportation efficiency of both pure and mixed non-orthgonal states compared to that of non-maximally entangled and mixed states.