No Arabic abstract
We report on the discovery of extended Ly-alpha nebulae at z~3.3 in the Hubble Ultra Deep Field (HUDF, ~ 40 kpc X 80 kpc) and behind the Hubble Frontier Fields galaxy cluster MACSJ0416 (~ 40kpc), spatially associated with groups of star-forming galaxies. VLT/MUSE integral field spectroscopy reveals a complex structure with a spatially-varying double peaked Ly-alpha emission. Overall, the spectral profiles of the two Ly-alpha nebulae are remarkably similar, both showing a prominent blue emission, more intense and slightly broader than the red peak. From the first nebula, located in the HUDF, no X-ray emission has been detected, disfavoring the possible presence of AGNs. Spectroscopic redshifts have been derived for 11 galaxies within two arcsec from the nebula and spanning the redshift range 1.037<z<5.97. The second nebula, behind MACSJ0416, shows three aligned star-forming galaxies plausibly associated to the emitting gas. In both systems, the associated galaxies reveal possible intense rest-frame-optical nebular emissions lines [OIII]4959-5007+Hbeta with equivalent widths as high as 1500A rest-frame and star formation rates ranging from a few to tens of solar masses per year. A possible scenario is that of a group of young, star-forming galaxies sources of escaping ionising radiation that induce Ly-alpha fluorescence, therefore revealing the kinematics of the surrounding gas. Also Ly-alpha powered by star-formation and/or cooling radiation may resemble the double peaked spectral properties and the morphology observed here. If the intense blue emission is associated with inflowing gas, then we may be witnessing an early phase of galaxy or a proto-cluster (or group) formation.
Context. Searching for high-redshift galaxies is a field of intense activity in modern observational cosmology that will continue to grow with future ground-based and sky observatories. Over the last few years, a lot has been learned about the high-z Universe. Aims. Despite extensive Ly-alpha Blobs (LAB) surveys from low to high redshifts, giant LABs over 100 kpc have been found mostly at z~2-4. This redshift range is coincident with the transition epoch of galactic gas-circulation processes from inflows to outflows at z~2.5-3. This suggests that the formation of giant LABs may be related to a combination of gas inflows and outflows. Their extreme youth makes them interesting objects in the study of galaxy formation as they provide insight into some of the youngest known highly star forming galaxies, with only modest time investments using ground-based telescopes. Methods. Systematic narrow-band Ly-alpha nebula surveys are ongoing, but they are limited in their covered redshift range and their comoving volume. This poses a significant problem when searching for such rare sources. To address this problem, we developed a systematic searching tool, ATACAMA (A Tool for seArChing for lArge LyMan Alpha nebulae) designed to find large Ly-alpha nebulae at any redshift within deep multi-wavelength broad-band imaging. Results. We identified a Ly-alpha nebula candidate at zphot~3.3 covering an isophotal area of 29.4sq.arcsec. Its morphology shows a bright core and a faint core which coincides with the morphology of previously known Ly-alpha blobs. A first estimation of the Ly-alpha equivalent width and line flux agree with the values from the study led by several groups.
Direct Ly $alpha$ imaging of intergalactic gas at $zsim2$ has recently revealed giant cosmological structures around quasars, e.g. the Slug Nebula (Cantalupo et al. 2014). Despite their high luminosity, the detection rate of such systems in narrow-band and spectroscopic surveys is less than 10%, possibly encoding crucial information on the distribution of gas around quasars and the quasar emission properties. In this study, we use the MUSE integral-field instrument to perform a blind survey for giant Ly $alpha$ nebulae around 17 bright radio-quiet quasars at $3<z<4$ that does not suffer from most of the limitations of previous surveys. After data reduction and analysis performed with specifically developed tools, we found that each quasar is surrounded by giant Ly $alpha$ nebulae with projected sizes larger than 100 physical kpc and, in some cases, extending up to 320 kpc. The circularly averaged surface brightness profiles of the nebulae appear very similar to each other despite their different morphologies and are consistent with power laws with slopes $approx-1.8$. The similarity between the properties of all these nebulae and the Slug Nebula suggests a similar origin for all systems and that a large fraction of gas around bright quasars could be in a relatively cold (T$sim$10$^4$K) and dense phase. In addition, our results imply that such gas is ubiquitous within at least 50 kpc from bright quasars at $3<z<4$ independently of the quasar emission opening angle, or extending up to 200 kpc for quasar isotropic emission.
We characterize the ionized gas outflows in 15 low-redshift star-forming galaxies, a Valparaiso ALMA Line Emission Survey (VALES) subsample, using MUSE integral field spectroscopy and GAMA photometric broadband data. We measure the emission-line spectra by fitting a double-component profile, with the second and broader component being related to the outflowing gas. This interpretation is in agreement with the correlation between the observed star-formation rate surface density ($Sigma_{mathrm{SFR}}$) and the second-component velocity dispersion ($sigma_{mathrm{2nd}}$), expected when tracing the feedback component. By modelling the broadband spectra with spectra energy distribution (SED) fitting and obtaining the star-formation histories of the sample, we observe a small decrease in SFR between 100 and 10 Myr in galaxies when the outflow H$alpha$ luminosity contribution is increased, indicating that the feedback somewhat inhibits the star formation within these timescales. The observed emission-line ratios are best reproduced by photoionization models when compared to shock-ionization, indicating that radiation from young stellar population is dominant, and seems to be a consequence of a continuous star-formation activity instead of a bursty event. The outflow properties such as mass outflow rate ($sim 0.1,$M$_odot$ yr$^{-1}$), outflow kinetic power ($sim 5.2 times 10^{-4}% L_{mathrm{bol}}$) and mass loading factor ($sim 0.12$) point towards a scenario where the measured feedback is not strong and has a low impact on the evolution of galaxies in general.
A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Ly$alpha$ nebulae around AGNs at redshift z$sim$3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Ly$alpha$ nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances $r>30$~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r$lesssim$30 pkpc) and the associated high values of the HeII to Ly$alpha$ ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Ly$alpha$ nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.
We present a study of the galaxy environment of 9 strong HI+CIV absorption line systems ($16.2<{rm log}(N({rm HI}))<21.2$) spanning a wide range in metallicity at $zsim4-5$, using MUSE integral field and X-Shooter spectroscopic data collected in a $zapprox 5.26$ quasar field. We identify galaxies within a 250 kpc and $pm1000$ km s$^{-1}$ window for 6 out of the 9 absorption systems, with 2 of the absorption line systems showing multiple associated galaxies within the MUSE field of view. The space density of Ly$alpha$ emitting galaxies (LAEs) around the HI and CIV systems is $approx10-20$ times the average sky density of LAEs given the flux limit of our survey, showing a clear correlation between the absorption and galaxy populations. Further, we find that the strongest CIV systems in our sample are those that are most closely aligned with galaxies in velocity space, i.e. within velocities of $pm500$ km s$^{-1}$. The two most metal poor systems lie in the most dense galaxy environments, implying we are potentially tracing gas that is infalling for the first time into star-forming groups at high redshift. Finally, we detect an extended Ly$alpha$ nebula around the $zapprox 5.26$ quasar, which extends up to $approx50$ kpc at the surface brightness limit of $3.8 times 10^{-18}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$. After scaling for surface brightness dimming, we find that this nebula is centrally brighter, having a steeper radial profile than the average for nebulae studied at $zsim3$ and is consistent with the mild redshift evolution seen from $zapprox 2$.