Do you want to publish a course? Click here

Weakly-correlated nature of ferromagnetism in non symmorphic CrO$_2$ revealed by bulk-sensitive soft X ray ARPES

90   0   0.0 ( 0 )
 Added by Federico Bisti
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chromium dioxide CrO$_2$ belongs to a class of materials called ferromagnetic half-metals, whose peculiar aspect is to act as a metal in one spin orientation and as semiconductor or insulator in the opposite one. Despite numerous experimental and theoretical studies motivated by technologically important applications of this material in spintronics, its fundamental properties such as momentum resolved electron dispersions and Fermi surface have so far remained experimentally inaccessible due to metastability of its surface that instantly reduces to amorphous Cr$_2$O$_3$. In this work, we demonstrate that direct access to the native electronic structure of CrO$_2$ can be achieved with soft-X-ray angle-resolved photoemission spectroscopy whose large probing depth penetrates through the Cr$_2$O$_3$ layer. For the first time the electronic dispersions and Fermi surface of CrO$_2$ are measured, which are fundamental prerequisites to solve the long debate on the nature of electronic correlations in this material. Since density functional theory augmented by a relatively weak local Coulomb repulsion gives an exhaustive description of our spectroscopic data, we rule out strong-coupling theories of CrO$_2$. Crucial for the correct interpretation of our experimental data in terms of the valence band dispersions is the understanding of a non-trivial spectral response of CrO$_2$ caused by interference effects in the photoemission process originating from the non-symmorphic space group of the rutile crystal structure of CrO$_2$.



rate research

Read More

We have studied magnetism in anatase Ti$_{1-x}$Co$_x$O$_{2-delta}$ ({it x} = 0.05) thin films with various electron carrier densities, by soft x-ray magnetic circular dichroism (XMCD) measurements at the Co $L_{2,3}$ absorption edges. For electrically conducting samples, the magnetic moment estimated by XMCD was $<$ 0.3 $mu_B$/Co using the surface-sensitive total electron yield (TEY) mode, while it was 0.3-2.4 $mu_B$/Co using the bulk-sensitive total fluorescence yield (TFY) mode. The latter value is in the same range as the saturation magnetization 0.6-2.1 $mu_B$/Co deduced by SQUID measurement. The magnetization and the XMCD intensity increased with carrier density, consistent with the carrier-induced origin of the ferromagnetism.
Angle-resolved photoelectron spectroscopy (ARPES) is the main experimental tool to explore electronic structure of solids resolved in the electron momentum k . Soft-X-ray ARPES (SX-ARPES), operating in a photon energy range around 1 keV, benefits from enhanced probing depth compared to the conventional VUV-range ARPES, and elemental/chemical state specificity achieved with resonant photoemission. These advantages make SX-ARPES ideally suited for buried heterostructure and impurity systems, which are at the heart of current and future electronics. These applications are illustrated here with a few pioneering results, including buried quantum-well states in semiconductor and oxide heterostructures, their bosonic coupling critically affecting electron transport, magnetic impurities in diluted magnetic semiconductors and topological materials, etc. High photon flux and detection efficiency are crucial for pushing the SX-ARPES experiment to these most photon-hungry cases.
Taking advantage of the large electron escape depth of soft x-ray angle resolved photoemission spectroscopy we report electronic structure measurements of (111)-oriented [LaNiO3/LaMnO3] superlattices and LaNiO3 epitaxial films. For thin films we observe a 3D Fermi surface with an electron pocket at the Brillouin zone center and hole pockets at the zone vertices. Superlattices with thick nickelate layers present a similar electronic structure. However, as the thickness of the LaNiO3 is reduced the superlattices become insulating. These heterostructures do not show a marked redistribution of spectral weight in momentum space but exhibit a pseudogap of 50 meV.
We have investigated the electronic states and spin polarization of half-metallic ferromagnet CrO$_2$ (100) epitaxial films by bulk-sensitive spin-resolved photoemission spectroscopy with a focus on non-quasiparticle (NQP) states derived from electron-magnon interactions. We found that the averaged values of the spin polarization are approximately 100% and 40% at 40 K and 300 K, respectively. This is consistent with the previously reported result [H. Fujiwara et al., Appl. Phys. Lett. 106, 202404 (2015).]. At 100 K, peculiar spin depolarization was observed at the Fermi level ($E_{F}$), which is supported by theoretical calculations predicting NQP states. This suggests the possible appearance of NQP states in CrO$_2$. We also compare the temperature dependence of our spin polarizations with that of the magnetization.
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals only due to paramagnetic Mn$^{2+}$ ions were observed in ZnO:Mn, nonmagnetic, paramagnetic and ferromagnetic Mn$^{2+}$ ions coexist in ZnO:Mn,N. XMCD signals of ZnO:Mn,N revealed that the localized Mn$^{2+}$ ground state and Mn$^{2+}$ state hybridized with ligand hole coexisted, implying $p$-$d$ exchange coupling. In the valence-band spectra, spectral weight near the Fermi level was suppressed, suggesting that interaction between magnetic moments in ZnO:Mn,N has localized nature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا