Do you want to publish a course? Click here

Near-Field cosmology with RR Lyrae variable stars: A first view of substructure in the southern sky

54   0   0.0 ( 0 )
 Added by Sonia Duffau
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an update of a spectroscopic follow-up survey at low-resolution of a large number of RR Lyrae halo overdensity candidates found in the southern sky. The substructure candidates were identified in the RR Lyrae catalog of Torrealba et al. (2015) using Catalina Real-time Transient Survey (CRTS) data. Radial velocities and mean metallicities have been estimated for target stars in almost half of the original overdensities to assess their potential membership to coherent halo features.



rate research

Read More

We present a sample of ~5,000 RR Lyrae stars selected from the recalibrated LINEAR dataset and detected at heliocentric distances between 5 kpc and 30 kpc over ~8,000 deg^2 of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4. The number density distribution of halo RRab stars as a function of galactocentric distance can be described as an oblate ellipsoid with the axis ratio q=0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Using a group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters, and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters is suggestive of tidal streams possibly originating from globular clusters. Spectroscopic followup of detected halo groups is encouraged.
We present a detailed abundance study of 11 RR Lyrae ab-type variables: AS Vir, BS Aps, CD Vel, DT Hya, RV Oct, TY Gru, UV Oct, V1645 Sgr, WY Ant, XZ Aps, and Z Mic.High resolution and high S/N echelle spectra of these variables were obtained with 2.5 m du Pont telescope at the Las Campanas Observatory. We obtained more than 2300 spectra, roughly 200 spectra per star, distributed more or less uniformly throughout the pulsational cycles. A new method has been developed to obtain initial effective temperature of our sample stars at a specific pulsational phase. We find that the abundance ratios are generally consistent with those of similar metallicity field stars in different evolutionary states and throughout the pulsational cycles for RR Lyrae stars. TY Gru remains the only n-capture enriched star among the RRab in our sample. A new relation is found between microturbulence and effective temperature among stars of the HB population. In addition, the variation of microturbulence as a function of phase is empirically shown to be similar to the theoretical variation. Finally, we conclude that the derived teffand log g values of our sample stars follow the general trend of a single mass evolutionary track.
The second Gaia data release is expected to contain data products from about 22 months of observation. Based on these data, we aim to provide an advance publication of a full-sky Gaia map of RR Lyrae stars. Although comprehensive, these data still contain a significant fraction of sources which are insufficiently sampled for Fourier series decomposition of the periodic light variations. The challenges in the identification of RR Lyrae candidates with (much) fewer than 20 field-of-view transits are described. General considerations of the results, their limitations, and interpretation are presented together with prospects for improvement in subsequent Gaia data releases.
We present a search for RR Lyrae stars using the full six-year data set from the Dark Energy Survey (DES) covering ~5,000 sq. deg. of the southern sky. Using a multi-stage multi-variate classification and light curve template-fitting scheme, we identify RR Lyrae candidates with a median of 35 observations per candidate. We detect 6,971 RR Lyrae candidates out to ~335 kpc, and we estimate that our sample is >70% complete at ~150 kpc. We find excellent agreement with other wide-area RR Lyrae catalogs and RR Lyrae studies targeting the Magellanic Clouds and other Milky Way satellite galaxies. We fit the smooth stellar halo density profile using a broken-power-law model with fixed halo flattening (q = 0.7), and we find strong evidence for a break at $R_0 = 32.1^{+1.1}_{-0.9}$ kpc with an inner slope of $n_1 = -2.54^{+0.09}_{-0.09}$ and an outer slope of $n_2 = -5.42^{+0.13}_{-0.14}$. We use our catalog to perform a search for Milky Way satellite galaxies with large sizes and low luminosities. Using a set of simulated satellite galaxies, we find that our RR Lyrae-based search is more sensitive than those using resolved stellar populations in the regime of large ($r_h > 500$ pc), low-surface-brightness dwarf galaxies. A blind search for large, diffuse satellites yields three candidate substructures. The first can be confidently associated with the dwarf galaxy Eridanus II. The second has a similar distance and proper motion to the ultra-faint dwarf galaxy Tucana II but is separated by ~5 deg. The third is close in projection to the globular cluster NGC 1851 but is ~10 kpc more distant and appears to differ in proper motion.
We use a combination of spatial distribution and radial velocity to search for halo sub-structures in a sample of 412 RR Lyrae stars (RRLS) that covers a $sim 525$ square degrees region of the Virgo Overdensity (VOD) and spans distances from the Sun from 4 to 75 kpc. With a friends-of-friends algorithm we identified six high significance groups of RRLS in phase space, which we associate mainly with the VOD and with the Sagittarius stream. Four other groups were also flagged as less significant overdensities. Three high significance and 3 lower significance groups have distances between $sim 10$ and 20 kpc, which places them with the distance range attributed by others to the VOD. The largest of these is the Virgo Stellar Stream (VSS) at 19 kpc, which has 18 RRLS, a factor of 2 increase over the number known previously. While these VOD groups are distinct according to our selection cirteria, their overlap in position and distance, and, in a few cases, similarity in radial velocity are suggestive that they may not all stem separate accretion events. Even so, the VOD appears to be caused by more than one overdensity. The Sgr stream is a very obvious feature in the background of the VOD at a mean distance of 44 kpc. Two additional high significant groups were detected at distances $>40$ kpc. Their radial velocities and locations differ from the expected path of the Sgr debris in this part of the sky, and they are likely to be remnants of other accretion events.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا