Do you want to publish a course? Click here

Chromospheric activity and evolutionary age of the Sun and four solar twins

63   0   0.0 ( 0 )
 Added by Marco Mittag
 Publication date 2016
  fields Physics
and research's language is English
 Authors M. Mittag




Ask ChatGPT about the research

The activity levels of the solar-twin candidates HD 101364 and HD 197027 are measured and compared with the Sun, the known solar twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute ages of these five objects are estimated from their positions in the HR diagram and the evolutionary (relative) age compared with their activity levels. To represent the activity level of these stars, the Mount Wilson S-indices were used. To obtain consistent ages and evolutionary advance on the main sequence, we used evolutionary tracks calculated with the Cambridge Stellar Evolution Code. From our spectroscopic observations of HD 101364 and HD 197027 and based on the established calibration procedures, the respective Mount Wilson S-indices are determined. We find that the chromospheric activity of both stars is comparable with the present activity level of the Sun and that of 18 Sco, at least for the period in consideration. Furthermore, the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found to be 7.2, 7.1, 6.1, and 5.1 Gyr, respectively. With the exception of 51 Peg, which has a significantly higher metallicity and a mass higher by about 10% than the Sun, the present Sun and its twins compare relatively well in their activity levels, even though the other twins are somewhat older. Even though 51 Peg has a similar age of 6.1 Gyr, this star is significantly less active. Only when we compare it on a relative age scale (which is about 20% shorter for 51 Peg than for the Sun in absolute terms) and use the higher-than-present long-term S$_{rm{MWO}}$ average of 0.18 for the Sun, does the S-index show a good correlation with evolutionary (relative) age. This shows that in the search for a suitably similar solar twin, the relative main-sequence age matters for obtaining a comparable activity level.



rate research

Read More

Evolution of the 7Li abundance in the convection zone of the Sun during different stages of its life time is considered to explain its low photospheric value in comparison with that of the solar system meteorites. Lithium is intensively and transiently burned in the early stages of evolution (pre-main sequence, pMS) when the radiative core arises, and then the Li abundance only slowly decreases during the main sequence (MS). We study the rates of lithium burning during these two stages. In a model of the Sun, computed ignoring pMS and without extra-convective mixing (overshooting) at the base of the convection zone, the lithium abundance does not decrease significantly during the MS life time of 4.6 Gyr. Analysis of helioseismic
We determine the age and mass of the three best solar twin candidates in open cluster M67 through lithium evolutionary models. We computed a grid of evolutionary models with non-standard mixing at metallicity [Fe/H] = 0.01 with the Toulouse-Geneva evolution code for a range of stellar masses. We estimated the mass and age of 10 solar analogs belonging to the open cluster M67. We made a detailed study of the three solar twins of the sample, YPB637, YPB1194, and YPB1787. We obtained a very accurate estimation of the mass of our solar analogs in M67 by interpolating in the grid of evolutionary models. The three solar twins allowed us to estimate the age of the open cluster, which is 3.87+0.55-0.66 Gyr, which is better constrained than former estimates. Our results show that the 3 solar twin candidates have one solar mass within the errors and that M67 has a solar age within the errors, validating its use as a solar proxy. M67 is an important cluster when searching for solar twins.
We present the chromospheric activity (CA) levels, metallicities and full space motions for 41 F, G, K and M dwarf stars in 36 wide binary systems. Thirty-one of the binaries, contain a white dwarf component. In such binaries the total age can be estimated by adding the cooling age of the white dwarf to an estimate of the progenitors main sequence lifetime. To better understand how CA correlates to stellar age, 14 cluster member stars were also observed. Our observations demonstrate for the first time that in general CA decays with age from 50 Myr to at least 8 Gyr for stars with 1.0 < V-I < 2.4. However, little change occurs in CA level for stars with V-I < 1.0 between 1 Gyr and 5 Gyr, consistent with the results of Pace et al. (2009). Our sample also exhibits a negative correlation between stellar age and metallicity, a positive correlation between stellar age and W space velocity component and the W velocity dispersion increases with age. Finally, the population membership of these wide binaries is examined based upon their U, V, W kinematics, metallicity and CA. We conclude that wide binaries are similar to field and cluster stars in these respects. More importantly, they span a much more continuous range in age and metallicity than is afforded by nearby clusters.
The atmospheric activity of the Sun and solar-type stars is analysed involving observations from HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories, and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr Solar cycles, is different: it becomes more prominent in K-stars. Comparative study of solar-type stars with different levels of the chromospheric and coronal activity confirms that the Sun belongs to stars with the low level of the chromospheric activity and stands apart among these stars by the minimum level of the coronal radiation and minimum flux variations of the photospheric radiation.
We identify member stars of more than 90 open clusters in the LAMOST survey. With the method of Fang et al.(2018), the chromospheric activity (CA) indices logRCaK for 1091 member stars in 82 open clusters and logRH{alpha} for 1118 member stars in 83 open clusters are calculated. The relations between the average logRCaK, logRH{alpha} in each open cluster and its age are investigated in different Teff and [Fe/H] ranges. We find that CA starts to decrease slowly from logt = 6.70 to logt = 8.50, and then decreases rapidly until logt = 9.53. The trend becomes clearer for cooler stars. The quadratic functions between logR and logt with 4000K < Teff < 5500K are constructed, which can be used to roughly estimate ages of field stars with accuracy about 40% for logRCaK and 60% for logRH{alpha}.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا