Do you want to publish a course? Click here

Waveguide photonic limiters based on topologically protected resonant modes

57   0   0.0 ( 0 )
 Added by Ulrich Kuhl
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a concept of chiral photonic limiters utilising topologically protected localised midgap defect states in a photonic waveguide. The chiral symmetry alleviates the effects of structural imperfections and guaranties a high level of resonant transmission for low intensity radiation. At high intensity, the light-induced absorption can suppress the localised modes, along with the resonant transmission. In this case the entire photonic structure becomes highly reflective within a broad frequency range, thus increasing dramatically the damage threshold of the limiter. Here we demonstrate experimentally the principle of operation of such photonic structures using a waveguide consisting of coupled dielectric microwave resonators.



rate research

Read More

Entangled multiphoton states lie at the heart of quantum information, computing, and communications. In recent years, topology has risen as a new avenue to robustly transport quantum states in the presence of fabrication defects, disorder and other noise sources. Whereas topological protection of single photons and correlated photons has been recently demonstrated experimentally, the observation of topologically protected entangled states has thus far remained elusive. Here, we experimentally demonstrate the topological protection of spatially-entangled biphoton states. We observe robustness in crucial features of the topological biphoton correlation map in the presence of deliberately introduced disorder in the silicon nanophotonic structure, in contrast with the lack of robustness in nontopological structures. The topological protection is shown to ensure the coherent propagation of the entangled topological modes, which may lead to robust propagation of quantum information in disordered systems.
We present an analytical theory of topologically protected photonic states for the two-dimensional Maxwell equations for a class of continuous periodic dielectric structures, modulated by a domain wall. We further numerically confirm the applicability of this theory for three-dimensional structures.
Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave-division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on $120$-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, HongOu-Mandel (HOM) interference with a high visibility of $0.956 pm 0.006$, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing.
Supercontinuum generation in optical fibers is one of the most dramatic nonlinear effects discovered, allowing short pulses to be converted into multi-octave spanning coherent spectra. However, generating supercontinua that are both coherent and broadband requires pulses that are simultaneously ultrashort with high peak power. This results in a reducing efficiency with increasing pulse repetition rate, that has hindered supercontinua at microwave line spacing, i.e. 10s of GHz. Soliton microcombs by contrast, can generate octave-spanning spectra, but with good conversion efficiency only at vastly higher repetition rates in the 100s of GHz. Here, we bridge this efficiency gap with resonant supercontinuum, allowing supercontinuum generation using input pulses with an ultra-low 6 picojoule energy, and duration of 1 picosecond, 10-fold longer than what is typical. By applying synchronous pulse-driving to a dispersion-engineered, low-loss Si$_3$N$_4$ photonic chip microresonator, we generate dissipative Kerr solitons with a strong dispersive wave, both bound to the input pulse. This creates a smooth, flattened 2,200 line frequency comb, with an electronically detectable repetition rate of 28 GHz, constituting the largest bandwidth-line-count product for any microcomb generated to date. Strikingly, we observe that solitons exist in a weakly bound state with the input pulse, stabilizing their repetition rate, but simultaneously allowing noise transfer from one to the other to be suppressed even for offset frequencies 100 times lower than the linear cavity decay rate. We demonstrate that this nonlinear filtering can be enhanced by pulse-driving asynchronously, in order to preserve the coherence of the comb. Taken together, our work establishes resonant supercontinuum as a promising route to broadband and coherent spectra.
We perform phase-sensitive near-field scanning optical microscopy on photonic-crystal waveguides. The observed intricate field patterns are analyzed by spatial Fourier transformations, revealing several guided TE- and TM-like modes. Using the reconstruction algorithm proposed by Ha, et al. (Opt. Lett. 34 (2009)), we decompose the measured two-dimensional field pattern in a superposition of propagating Bloch modes. This opens new possibilities to study specific modes in near-field measurements. We apply the method to study the transverse behavior of a guided TE-like mode, where the mode extends deeper in the surrounding photonic crystal when the band edge is approached.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا