Constraining a halo model for cosmological neutral hydrogen


Abstract in English

We describe a combined halo model to constrain the distribution of neutral hydrogen (HI) in the post-reionization universe. We combine constraints from the various probes of HI at different redshifts: the low-redshift 21-cm emission line surveys, intensity mapping experiments at intermediate redshifts, and the Damped Lyman-Alpha (DLA) observations at higher redshifts. We use a Markov Chain Monte Carlo (MCMC) approach to combine the observations and place constraints on the free parameters in the model. Our best-fit model involves a relation between neutral hydrogen mass $M_{rm HI}$ and halo mass $M$ with a non-unit slope, and an upper and a lower cutoff. We find that the model fits all the observables but leads to an underprediction of the bias parameter of DLAs at $z sim 2.3$. We also find indications of a possible tension between the HI column density distribution and the mass function of HI-selected galaxies at $zsim 0$. We provide the central values of the parameters of the best-fit model so derived. We also provide a fitting form for the derived evolution of the concentration parameter of HI in dark matter haloes, and discuss the implications for the redshift evolution of the HI-halo mass relation.

Download