We propose and analyse a mathematical measure for the amount of squeezing contained in a continuous variable quantum state. We show that the proposed measure operationally quantifies the minimal amount of squeezing needed to prepare a given quantum state and that it can be regarded as a squeezing analogue of the entanglement of formation. We prove that the measure is convex and superadditive and we provide analytic bounds as well as a numerical convex optimisation algorithm for its computation. By example, we then show that the amount of squeezing needed for the preparation of certain multi-mode quantum states can be significantly lower than naive approaches suggest.