Do you want to publish a course? Click here

Dipolar exchange induced transparency with Rydberg atoms

57   0   0.0 ( 0 )
 Added by David Petrosyan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A three-level atomic medium can be made transparent to a resonant probe field in the presence of a strong control field acting on an adjacent atomic transition to a long-lived state, which can be represented by a highly excited Rydberg state. The long-range interactions between the Rydberg state atoms then translate into strong, non-local, dispersive or absorptive interactions between the probe photons, which can be used to achieve deterministic quantum logic gates and single photon sources. Here we show that long-range dipole-dipole exchange interaction with one or more spins -- two-level systems represented by atoms in suitable Rydberg states -- can play the role of control field for the optically-dense medium of atoms. This induces transparency of the medium for a number of probe photons $n_p$ not exceeding the number of spins $n_s$, while all the excess photons are resonantly absorbed upon propagation. In the most practical case of a single spin atom prepared in the Rydberg state, the medium is thus transparent only to a single input probe photon. For larger number of spins $n_s$, all $n_p leq n_s$ photon components of the probe field would experience transparency but with an $n_p$-dependent group velocity.



rate research

Read More

We present experimental results on the influence of magnetic fields and laser polarization on electromagnetically induced transparency (EIT) using Rydberg levels of $^{87}$Rb atoms. The measurements are performed in a room temperature vapor cell with two counter-propagating laser beams at 480nm and 780nm in a ladder-type energy level scheme. We measure the EIT spectrum of a range of $ns_{1/2}$ Rydberg states for $n=19-27$, where the hyperfine structure can still be resolved. Our measurements span the range of magnetic fields from the low field linear Zeeman regime to the high field Paschen-Back regimes. The observed spectra are very sensitive to small changes in magnetic fields and the polarization of the laser beams. We model our observations using optical Bloch equations that take into account the full multi-level structure of the atomic states involved and the decoupling of the electronic $J$ and nuclear $I$ angular momenta in the Breit-Rabi regime. The numerical model yields excellent agreement with the observations. In addition to EIT related experiments, our results are relevant for experiments involving coherent excitation to Rydberg levels in the presence of magnetic fields.
142 - Qi Zhang , Zhengyang Bai , 2018
We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydberg interaction. Especially, the response speed of the Rydberg-EIT can be five-times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison, two different theoretical approaches (i.e. two-atom model and many-atom model) are considered, revealing that Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical applications in quantum information processing by using Rydberg atoms.
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay and strong Rydberg-Rydberg atom interactions leads to the emergence of sizeable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.
We demonstrate theoretically a parallelized C-NOT gate which allows to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond timescale. Our scheme relies on the strong and long-ranged interaction between Rydberg atoms triggering Electromagnetically Induced Transparency (EIT). By this we can robustly implement a conditional transfer of all ensemble atoms among two logical states, depending on the state of the control atom. We outline a many body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.
We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, whilst the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا