Do you want to publish a course? Click here

H0LiCOW II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE0435-1223

73   0   0.0 ( 0 )
 Added by Dominique Sluse
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of $H_0$ from the time-delay technique. We present the results of a systematic spectroscopic identification of the galaxies in the field of view of the lensed quasar HE0435-1223, using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalog triples the number of known galaxy redshifts in the vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 3 arcmin from the lens. We complement our catalog with literature data to gather redshifts up to 15 arcmin from the lens, and search for galaxy groups or clusters projected towards HE0435-1223. We confirm that the lens is a member of a small group that includes at least 12 galaxies, and find 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that i) at most three of the five brightest galaxies projected within 12 arcsec of the lens need to be explicitly used in the lens models, and ii) the groups can be treated in the lens model as an external tidal field (shear) contribution.



rate research

Read More

Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce high-order perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on $H_0$ of a few-percent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI2033-4723 ($z_{rm src} = 1.662$, $z_{rm lens}$ = 0.6575), one of the core targets of the H0LICOW project for which we present cosmological inferences in a companion paper (Rusu et al. 2019). We use the Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the lens ($sigma_{rm {los}}= 250^{+15}_{-21}$ km/s) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to $i < 23$ mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalog, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the flexion-shift as a measure of the amplitude of the gravitational perturbation, we identify 2 galaxy groups and 3 galaxies that require specific attention in the lens models. The ESO MUSE data enable us to measure the velocity-dispersions of three of these galaxies. These results are essential for the cosmological inference analysis presented in Rusu et al. (2019).
Strong gravitational lensing provides a powerful test of Cold Dark Matter (CDM) as it enables the detection and mass measurement of low mass haloes even if they do not contain baryons. Compact lensed sources such as Active Galactic Nuclei (AGN) are particularly sensitive to perturbing subhalos, but their use as a test of CDM has been limited by the small number of systems which have significant radio emission which is extended enough avoid significant lensing by stars in the plane of the lens galaxy, and red enough to be minimally affected by differential dust extinction. Narrow-line emission is a promising alternative as it is also extended and, unlike radio, detectable in virtually all optically selected AGN lenses. We present first results from a WFC3 grism narrow-line survey of lensed quasars, for the quadruply lensed AGN HE0435-1223. Using a forward modelling pipeline which enables us to robustly account for spatial blending, we measure the [OIII] 5007 AA~ flux ratios of the four images. We find that the [OIII] fluxes and positions are well fit by a simple smooth mass model for the main lens. Our data rule out a $M_{600}>10^{8} (10^{7.2}) M_odot$ NFW perturber projected within $sim$1farcs0 (0farcs1) arcseconds of each of the lensed images, where $M_{600}$ is the perturber mass within its central 600 pc. The non-detection is broadly consistent with the expectations of $Lambda$CDM for a single system. The sensitivity achieved demonstrates that powerful limits on the nature of dark matter can be obtained with the analysis of $sim20$ narrow-line lenses.
We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply-imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE0435-1223 from 13-year light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modeling of the main deflectors and line of sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (TDSL). In flat $Lambda$CDM with free matter and energy density, we find $H_0$ = 71.9 +2.4 -3.0 km/s/Mpc and $Omega_{Lambda}$ = 0.62 +0.24 -0.35 . This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The TDSL and Planck joint constraints are $H_0$ = 69.2 +1.4 -2.2 km/s/Mpc, $Omega_{Lambda}$ = 0.70 +0.01 -0.01 and $Omega_k$ = 0.003 +0.004 -0.006 in open $Lambda$CDM and $H_0$ = 79.0 +4.4 -4.2 km/s/Mpc, $Omega_{de}$ = 0.77 +0.02 -0.03 and $w$ = -1.38 +0.14 -0.16 in flat $w$CDM. Combined with Planck and Baryon Acoustic Oscillation data, when relaxing the constraints on the numbers of relativistic species we find $N_{eff}$ = 3.34 +0.21 -0.21 and when relaxing the total mass of neutrinos we find 0.182 eV. In an open $w$CDM in combination with Planck and CMB lensing we find $H_0$ = 77.9 +5.0 -4.2 km/s/Mpc, $Omega_{de}$ = 0.77 +0.03 -0.03, $Omega_k$ = -0.003 +0.004 -0.004 and $w$ = -1.37 +0.18 -0.23.
588 - A. A. Dutton 2011
The degeneracy among the disk, bulge and halo contributions to galaxy rotation curves prevents an understanding of the distribution of baryons and dark matter in disk galaxies. In an attempt to break this degeneracy, we present an analysis of the spiral galaxy strong gravitational lens SDSS J2141-0001, discovered as part of the SLACS survey. We present new Hubble Space Telescope multicolor imaging, gas and stellar kinematics data derived from long-slit spectroscopy, and K-band LGS adaptive optics imaging, both from the Keck telescopes. We model the galaxy as a sum of concentric axisymmetric bulge, disk and halo components and infer the contribution of each component, using information from gravitational lensing and gas kinematics. This analysis yields a best-fitting total (disk plus bulge) stellar mass of log_{10}(Mstar/Msun) = 10.99(+0.11,-0.25). The photometric data combined with stellar population synthesis models yield log_{10}(Mstar/Msun) = 10.97pm0.07, and 11.21pm0.07 for the Chabrier and Salpeter IMFs, respectively. Accounting for the expected gas fraction of simeq 20% reduces the lensing plus kinematics stellar mass by 0.10pm0.05 dex, resulting in a Bayes factor of 11.9 in favor of a Chabrier IMF. The dark matter halo is roughly spherical, with minor to major axis ratio q_{halo}=0.91(+0.15,-0.13). The dark matter halo has a maximum circular velocity of V_{max}=276(+17,-18) km/s, and a central density parameter of log_{10}Delta_{V/2}=5.9(+0.9,-0.5). This is higher than predicted for uncontracted dark matter haloes in LCDM cosmologies, log_{10}Delta_{V/2}=5.2, suggesting that either the halo has contracted in response to galaxy formation, or that the halo has a higher than average concentration. At 2.2 disk scale lengths the dark matter fraction is f_{DM}=0.55(+0.20,-0.15), suggesting that SDSS J2141-0001 is sub-maximal.
Strong gravitational lenses with measured time delays between the multiple images allow a direct measurement of the time-delay distance to the lens, and thus a measure of cosmological parameters, particularly the Hubble constant, $H_{0}$. We present a blind lens model analysis of the quadruply-imaged quasar lens HE 0435-1223 using deep Hubble Space Telescope imaging, updated time-delay measurements from the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL), a measurement of the velocity dispersion of the lens galaxy based on Keck data, and a characterization of the mass distribution along the line of sight. HE 0435-1223 is the third lens analyzed as a part of the $H_{0}$ Lenses in COSMOGRAILs Wellspring (H0LiCOW) project. We account for various sources of systematic uncertainty, including the detailed treatment of nearby perturbers, the parameterization of the galaxy light and mass profile, and the regions used for lens modeling. We constrain the effective time-delay distance to be $D_{Delta t} = 2612_{-191}^{+208}~mathrm{Mpc}$, a precision of 7.6%. From HE 0435-1223 alone, we infer a Hubble constant of $H_{0} = 73.1_{-6.0}^{+5.7}~mathrm{km~s^{-1}~Mpc^{-1}}$ assuming a flat $Lambda$CDM cosmology. The cosmographic inference based on the three lenses analyzed by H0LiCOW to date is presented in a companion paper (H0LiCOW Paper V).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا