Do you want to publish a course? Click here

NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin

96   0   0.0 ( 0 )
 Added by Jon M. Miller
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 hard state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cJ/GM^2 > 0.98 (1 sigma statistical limits only). The fits also require a high inclination: theta = 75(2) degrees. Strong dips are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower-flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.



rate research

Read More

We present the results obtained from detailed spectral and timing studies of extra-galactic black hole X-ray binaries LMC~X--1 and LMC~X--3, using simultaneous observations with {it Nuclear Spectroscopic Telescope Array (NuSTAR)} and {it Neil Gehrels Swift} observatories. The combined spectra in the $0.5-30$~keV energy range, obtained between 2014 and 2019, are investigated for both sources. We do not find any noticeable variability in $0.5-30$~keV light curves, with $0.1-10$~Hz fractional rms estimated to be $<2$%. No evidence of quasi-periodic oscillations is found in the power density spectra. The sources are found to be in the high soft state during the observations with disc temperature $T_{rm in}sim 1$~keV, photon index, $Gamma > 2.5$ and thermal emission fraction, $f_{rm disc}>80$%. An Fe K$alpha$ emission line is detected in the spectra of LMC~X--1, though no such feature is observed in the spectra of LMC~X--3. From the spectral modelling, the spins of the black holes in LMC~X--1 and LMC~X--3 are estimated to be in the range of $0.92-0.95$ and $0.19-0.29$, respectively. The accretion efficiency is found to be, $eta sim 0.13$ and $eta sim 0.04$ for LMC~X--1 and LMC~X--3, respectively.
We re-examine archival Ginga data for the black hole binary system GS 1124-683, obtained when the system was undergoing its 1991 outburst. Our analysis estimates the dimensionless spin parameter a=cJ/GM^2 by fitting the X-ray continuum spectra obtained while the system was in the Thermal Dominant state. For likely values of mass and distance, we find the spin to be a=-0.25 (-0.64, +0.05) (90% confidence), implying that the disk is retrograde (i.e. rotating antiparallel to the spin axis of the black hole). We note that this measurement would be better constrained if the distance to the binary and the mass of the black hole were more accurately determined. This result is unaffected by the model used to fit the hard component of the spectrum. In order to be able to recover a prograde spin, the mass of the black hole would need to be at least 15.25 Msun, or the distance would need to be less than 4.5 kpc, both of which disagree with previous determinations of the black hole mass and distance. If we allow f_col to be free, we obtain no useful spin constraint. We discuss our results in the context of recent spin measurements and implications for jet production.
Little is known about the properties of the accretion flows and jets of the lowest-luminosity quiescent black holes. We report new, strictly simultaneous radio and X-ray observations of the nearby stellar-mass black hole X-ray binary GS 2000+25 in its quiescent state. In deep Chandra observations we detect the system at a faint X-ray luminosity of $L_X = 1.1^{+1.0}_{-0.7} times 10^{30},(d/2 {rm ,, kpc})^2$ erg s$^{-1}$ (1-10 keV). This is the lowest X-ray luminosity yet observed for a quiescent black hole X-ray binary, corresponding to an Eddington ratio $L_X/L_{rm Edd} sim 10^{-9}$. In 15 hours of observations with the Karl G. Jansky Very Large Array, no radio continuum emission is detected to a $3sigma$ limit of $< 2.8 mu$Jy at 6 GHz. Including GS 2000+25, four quiescent stellar-mass black holes with $L_X < 10^{32}$ erg s$^{-1}$ have deep simultaneous radio and X-ray observations and known distances. These sources all have radio to X-ray luminosity ratios generally consistent with, but slightly lower than, the low state radio/X-ray correlation for stellar-mass black holes with $L_X > 10^{32}$ erg s$^{-1}$. Observations of these sources tax the limits of our current X-ray and radio facilities, and new routes to black hole discovery are needed to study the lowest-luminosity black holes.
During the June 2015 outburst of the black hole binary V404 Cyg, rapid changes in the X-ray brightness and spectra were common. The INTEGRAL monitoring campaign detected spectacular Eddington-limited X-ray flares, but also rapid variations at much lower flux levels. On 2015 June 21 at 20 h 50 min, the 3-10 keV JEM-X data as well as simultaneous optical data started to display a gradual brightening from one of these low-flux states. This was followed 15 min later by an order-of-magnitude increase of flux in the 20-40 keV IBIS/ISGRI light curve in just 15 s. The best-fitting model for both the pre- and post-transition spectra required a Compton-thick partially covering absorber. The absorber parameters remained constant, but the spectral slope varied significantly during the event, with the photon index decreasing from $Gamma approx 3.7$ to $Gamma approx 2.3$. We propose that the rapid 20-40 keV flux increase was either caused by a spectral state transition that was hidden from our direct view, or that there was a sudden reduction in the amount of Compton down-scattering of the primary X-ray emission in the disk outflow.
The black hole candidate EXO 1846-031 underwent an outburst in 2019, after at least 25 years in quiescence. We observed the system using textit{NuSTAR} on August 3rd, 2019. The 3--79 keV spectrum shows strong relativistic reflection features. Our baseline model gives a nearly maximal black hole spin value of $a=0.997_{-0.002}^{+0.001}$ ($1sigma$ statistical errors). This high value nominally excludes the possibility of the central engine harboring a neutron star. Using several models, we test the robustness of our measurement to assumptions about the density of the accretion disk, the nature of the corona, the choice of disk continuum model, and addition of reflection from the outer regions of the accretion disk. All tested models agree on a very high black hole spin value and a high value for the inclination of the inner accretion disk of $thetaapprox73^circ$. We discuss the implications of this spin measurement in the population of stellar mass black holes with known spins, including LIGO events.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا