EuCo2P2: A Model Molecular-Field Helical Heisenberg Antiferromagnet


Abstract in English

The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins 7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN = 66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab-plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility chi, high-field magnetization and magnetic heat capacity of EuCo2P2 single crystals at temperature T < TN with the predictions of our recent formulation of molecular field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~ T^3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the ab-plane and AFM interactions between nearest- and next-nearest planes, in agreement with the MFT analysis of chi{ab}(T < TN).

Download