Do you want to publish a course? Click here

Newton-Euler, Lagrange and Kirchhoff formulations of rigid body dynamics: a unified approach

88   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A unified formulation of rigid body dynamics based on Gauss principle is proposed. The Lagrange, Kirchhoff and Newton-Euler equations are seen to arise from different choices of the quasicoordinates in the velocity space. The group-theoretical aspects of the method are discussed.



rate research

Read More

In the framework of J-bundles a vielbein formulation of unified Einstein-Maxwell theory is proposed. In the resulting scheme, field equations matching the gravitational and electromagnetic fields are derived by constraining a five-dimensional variational principle. No dynamical scalar field is involved.
Within the framework of Lagrangian mechanics, the conservativeness of the hydrostatic forces acting on a floating rigid body is proved. The representation of the associated hydrostatic potential is explicitly worked out. The invariance of the resulting Lagrangian with respect surge, sway and yaw motions is used in connection with the Routh procedure in order to convert the original dynamical problem into a reduced one, in three independent variables. This allows to put on rational grounds the study of hydrostatic equilibrium, introducing the concept of pseudo--stability, meant as stability with respect to the reduced problem. The small oscillations of the system around a pseudo-stable equilibrium configuration are discussed.
We consider the motion of a two-dimensional body of arbitrary shape in a planar irrotational, incompressible fluid with a given amount of circulation around the body. We derive the equations of motion for this system by performing symplectic reduction with respect to the group of volume-preserving diffeomorphisms and obtain the relevant Poisson structures after a further Poisson reduction with respect to the group of translations and rotations. In this way, we recover the equations of motion given for this system by Chaplygin and Lamb, and we give a geometric interpretation for the Kutta-Zhukowski force as a curvature-related effect. In addition, we show that the motion of a rigid body with circulation can be understood as a geodesic flow on a central extension of the special Euclidian group SE(2), and we relate the cocycle in the description of this central extension to a certain curvature tensor.
A new variational principle for General Relativity, based on an action functional $I/(Phi, abla)/$ involving both the metric $Phi/$ and the connection $ abla/$ as independent, emph{unconstrained/} degrees of freedom is presented. The extremals of $I/$ are seen to be pairs $/(Phi, abla)/$ in which $Phi/$ is a Ricci flat metric, and $ abla/$ is the associated Riemannian connection. An application to Kaluzas theory of interacting gravitational and electromagnetic fields is discussed.
105 - A.A. Lykov , V.A. Malyshev 2016
This paper contains a rigorous mathematical example of direct derivation of the system of Euler hydrodynamic equations from Hamiltonian equations for N point particle system as N tends to infinity. Direct means that the following standard tools are not used in the proof: stochastic dynamics, thermodynamics, Boltzmann kinetic equations, correlation functions approach by N. N. Bogolyubov.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا