We report on magneto-optical imaging, magnetization, Hall effect and magneto-resistance experiments in Nb/Al_2O_3/Co thin film heterostructures. The magnetic field is applied perpendicularly to the plane of the film and gives rise to abrupt flux penetration of dendritic form. A magnetization texture is imprinted in the Co layer in perfect coincidence with these ramifications. The spin domains that mimic the vortex dendrites are stable upon the field removal. Moreover, the imprinted spin structure remains visible up to room temperature. Complementary magnetization, Hall effect and magneto-resistance experiments were performed in a similar sample where electrical contacts were placed on the Co layer. In the region of the field - temperature diagram where flux instabilities are known to occur in Nb films, irregular jumps are observed in the magnetic hysteresis and large amplitude noise is detected in the magneto-resistance and Hall resistivity data when measured as a function of the field.