The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, is the first large spectroscopic project aimed at characterizing these sources. Our work is focused at selecting emission-line objects and chromospherically active stars and on the evaluation of the atmospheric parameters. We have used a version of the code ROTFIT that exploits a wide and homogeneous collection of real star spectra, i.e. the Indo US library. We provide a catalog with the atmospheric parameters (Teff, logg, [Fe/H]), the radial velocity (RV) and an estimate of the projected rotation velocity (vsini). For cool stars (Teff<6000 K) we have also calculated the H-alpha and CaII-IRT chromospheric fluxes. We have derived the RV and the atmospheric parameters for 61,753 spectra of 51,385 stars. Literature data for a few hundred stars have been used to do a quality control of our results. The final accuracy of RV, Teff, logg, and [Fe/H] measurements is about 14 km/s, 3.5%, 0.3 dex, and 0.2 dex, respectively. However, while the Teff values are in very good agreement with the literature, we noted some issues with the determination of [Fe/H] of metal poor stars and the tendency, for logg, to cluster around the values typical for main sequence and red giant stars. We propose correction relations based on these comparison. The RV distribution is asymmetric and shows an excess of stars with negative RVs which is larger at low metallicities. We could identify stars with variable RV, ultrafast rotators, and emission-line objects. Based on the H-alpha and CaII-IRT fluxes, we have found 442 chromospherically active stars, one of which is a likely accreting object. The availability of precise rotation periods from the Kepler photometry has allowed us to study the dependency of the chromospheric fluxes on the rotation rate for a quite large sample of field stars.