The James Webb Space Telescope (JWST) will be an exquisite new near-infrared observatory with imaging and multi-object spectroscopy through ESAs NIRspec instrument with its unique Micro-Shutter Array (MSA), allowing for slits to be positioned on astronomical targets by opening specific 0.002-wide micro shutter doors. To ensure proper target acquisition, the on-sky position of the MSA needs to be verified before spectroscopic observations start. An onboard centroiding program registers the position of pre-identified guide stars in a Target Acquisition (TA) image, a short pre-spectroscopy exposure without dispersion (image mode) through the MSA with all shutters open. The outstanding issue is the availability of Galactic stars in the right luminosity range for TA relative to typical high redshift targets. We explore this here using the stars and $zsim8$ candidate galaxies identified in the source extractor catalogs of Brightest of Reionizing Galaxies survey (BoRG[z8]), a pure-parallel program with Hubble Space Telescope Wide-Field Camera 3. We find that (a) a single WFC3 field contains enough Galactic stars to satisfy the NIRspec astrometry requirement (20 milli-arcseconds), provided its and the NIRspec TAs are $m_{lim}>24.5$ AB in WFC3 F125W, (b) a single WFC3 image can therefore serve as the pre-image if need be, (c) a WFC3 mosaic and accompanying TA image satisfy the astrometry requirement at $sim23$ AB mag in WFC3 F125W, (d) no specific Galactic latitude requires deeper TA imaging due to a lack of Galactic stars, and (e) a depth of $sim24$ AB mag in WFC3 F125W is needed if a guide star in the same MSA quadrant as a target is required. We take the example of a BoRG identified $zsim8$ candidate galaxy and require a Galactic star within 20 of it. In this case, a depth of 25.5 AB in F125W is required (with $sim$97% confidence).