Do you want to publish a course? Click here

The Birkhoff theorem for unitary matrices of arbitrary dimensions

96   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

It was shown recently that Birkhoffs theorem for doubly stochastic matrices can be extended to unitary matrices with equal line sums whenever the dimension of the matrices is prime. We prove a generalization of the Birkhoff theorem for unitary matrices with equal line sums for arbitrary dimension.



rate research

Read More

The Birkhoffs theorem states that any doubly stochastic matrix lies inside a convex polytope with the permutation matrices at the corners. It can be proven that a similar theorem holds for unitary matrices with equal line sums for prime dimensions.
The unitary Birkhoff theorem states that any unitary matrix with all row sums and all column sums equal unity can be decomposed as a weighted sum of permutation matrices, such that both the sum of the weights and the sum of the squared moduli of the weights are equal to unity. If the dimension~$n$ of the unitary matrix equals a power of a prime $p$, i.e. if $n=p^w$, then the Birkhoff decomposition does not need all $n!$ possible permutation matrices, as the epicirculant permutation matrices suffice. This group of permutation matrices is isomorphic to the general affine group GA($w,p$) of order only $p^w(p^w-1)(p^w-p)...(p^w-p^{w-1}) ll left( p^w right)!$.
Birkhoffs theorem tells that any doubly stochastic matrix can be decomposed as a weighted sum of permutation matrices. A similar theorem reveals that any unitary matrix can be decomposed as a weighted sum of complex permutation matrices. Unitary matrices of dimension equal to a power of~2 (say $2^w$) deserve special attention, as they represent quantum qubit circuits. We investigate which subgroup of the signed permutation matrices suffices to decompose an arbitrary such matrix. It turns out to be a matrix group isomorphic to the extraspecial group {bf E}$_{2^{2w+1}}^+$ of order $2^{2w+1}$. An associated projective group of order $2^{2w}$ equally suffices.
Sinkhorn proved that every entry-wise positive matrix can be made doubly stochastic by multiplying with two diagonal matrices. In this note we prove a recently conjectured analogue for unitary matrices: every unitary can be decomposed into two diagonal unitaries and one whose row- and column sums are equal to one. The proof is non-constructive and based on a reformulation in terms of symplectic topology. As a corollary, we obtain a decomposition of unitary matrices into an interlaced product of unitary diagonal matrices and discrete Fourier transformations. This provides a new decomposition of linear optics arrays into phase shifters and canonical multiports described by Fourier transformations.
The approximated energy eigenvalues and the corresponding eigenfunctions of the spherical Woods-Saxon effective potential in $D$ dimensions are obtained within the new improved quantization rule for all $l$-states. The Pekeris approximation is used to deal with the centrifugal term in the effective Woods-Saxon potential. The inter-dimensional degeneracies for various orbital quantum number $l$ and dimensional space $D$ are studied. The solutions for the Hulth{e}n potential, the three-dimensional (D=3), the $% s$-wave ($l=0$) and the cases are briefly discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا