A combined spectroscopic and photometric stellar activity study of Epsilon Eridani


Abstract in English

We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF$$ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H$alpha$ analysis. We show that our H$alpha$ measurements are strongly correlated with photometry from the Microvariability and Oscillations of STars (MOST) instrument, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH$$ method, uses H$alpha$ measurements as input into the FF$$ model. While the Dalmatian spot modeling analysis and the FF$$ method with MOST space-based photometry are currently more robust, the HH$$ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH$$ method may prove quite useful in disentangling stellar signals.

Download