Carbon and oxygen isotopic ratios for nearby miras


Abstract in English

C and O isotopic ratios are reported for a sample of 46 Mira and SRa-type variable AGB stars. Vibration-rotation 1st and 2nd overtone CO lines in 1.5 to 2.5 $mu$m spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of the M stars had main sequence masses < 2 Msun and have not experienced sizable third dredge-up episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the 6 C stars in the sample three have clear evidence relating their origin to the occurrence of the third dredge-up. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars show a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2 to 2 Msun stars after the 1st dredge up. On the contrary, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This occurrence is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extramixing. This occurrence may indicate that the extramixing process is hampered at high metallicity or, equivalently, favored at low metallicity. Similar to O-rich grains no star in our sample shows evidence of HBB, expected for massive AGB stars.

Download