Do you want to publish a course? Click here

$U$ independent eigenstates of Hubbard model

61   0   0.0 ( 0 )
 Added by Ming-Yong Ye
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional Hubbard model is very important in condensed matter physics. However it has not been resolved though it has been proposed for more than 50 years. We give several methods to construct eigenstates of the model that are independent of the on-site interaction strength $U$.



rate research

Read More

We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BCS pairing and magnetic order. At half filling, where the ground state is antiferromagnetically ordered for any value of the on-site interaction $U$, we can identify a hidden critical point $U_{rm Mott}$, above which a finite BCS pairing is stabilized in the wave function. The existence of this point is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater insulator (at small values of $U$), where magnetism induces a potential energy gain, and a Mott insulator (at large values of $U$), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence of $U_{rm Mott}$ has crucial consequences when doping the system: We observe a tendency to phase separation into a hole-rich and a hole-poor region only when doping the Slater insulator, while the system is uniform by doping the Mott insulator. Superconducting correlations are clearly observed above $U_{rm Mott}$, leading to the characteristic dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing above $U_{rm Mott}$ shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.
The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent of that observed in quantum materials. Nevertheless, much of its phase diagram remains controversial. Here, we review a subset of what is known about the Hubbard model, based on exact results or controlled approximate solutions in various limits, for which there is a suitable small parameter. Our primary focus is on the ground state properties of the system on various lattices in two spatial dimensions, although both lower and higher dimensions are discussed as well. Finally, we highlight some of the important outstanding open questions.
60 - A.P. Kampf , A.A. Katanin 2002
The phase diagram of the two-dimensional extended one-band U-V-J Hubbard model is considered within a mean-field approximation and two- and many-patch renormalization group (RG) approaches near the van Hove band fillings. At small t and J>0 mean-field and many-patch RG approaches give similar results for the leading spin-density-wave (SDW) instability, while the two-patch RG approach, which predicts a wide region of charge-flux (CF) phase becomes unreliable due to nesting effect. At the same time, there is a complex competition between SDW, CF phases, and d-wave superconductivity in two- and many-patch RG approaches. While the spin-flux (SF) phase is not stable at the mean-field level, it is identified as a possible ground state at J<0 in both RG approaches. With increasing t the results of all three approaches merge: d-wave superconductivity at J>0 and ferromagnetism at J<0 become the leading instabilities. For large enough V the charge-density-wave (CDW) state occurs.
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor, regimes of phase separation, and a variety of distinct charge-density-wave (CDW), spin-density-wave (SDW) and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e. the ratio of characteristic phonon frequency to the strength of interactions.
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the essential condition for realizing orbital orders, we study simple two-orbital ($d_{xz}$, $d_{yz}$) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, $d_{xy}$ orbital is not essential to realize the nematic orbital order. The obtained orbital order depends on the orbital dependence and the topology of fermi surfaces. We also find that another type of orbital order, which is rotated $45^circ$, appears in the heavily hole-doped case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا