Solar UV variability is extremely relevant for the stratospheric ozone. It has an impact on Earths atmospheric structure and dynamics through radiative heating and ozone photochemistry. Our goal is to study the slope of the solar UV spectrum in two UV bands important for the stratospheric ozone production. In order to investigate the solar spectral variability, we use SOLSTICE (the Solar Stellar Irradiance Comparison Experiment) data onboard Solar Radiation and Climate Experiment (SORCE) satellite. Data sets used are far UV (115-180nm) and middle UV (180-310nm), as well as the Mg II index (the Bremen composite). We introduce the SOLSTICE [FUV - MUV] colour to study the solar spectral characteristics, as well as analysis of the colour versus Mg II index. To isolate the 11-year scale variation, we used the Empirical Mode decomposition (EMD) on the data sets. The [FUV - MUV] colour strongly correlates with the Mg II index. More in detail, the [FUV - MUV] colour shows a time dependent behavior when plotted versus Mg II index. To explain this dependence we hypothesize an efficiency reduction of SOLSTICE FUV irradiance using an exponential aging law.