No Arabic abstract
Recent captioning models are limited in their ability to scale and describe concepts unseen in paired image-text corpora. We propose the Novel Object Captioner (NOC), a deep visual semantic captioning model that can describe a large number of object categories not present in existing image-caption datasets. Our model takes advantage of external sources -- labeled images from object recognition datasets, and semantic knowledge extracted from unannotated text. We propose minimizing a joint objective which can learn from these diverse data sources and leverage distributional semantic embeddings, enabling the model to generalize and describe novel objects outside of image-caption datasets. We demonstrate that our model exploits semantic information to generate captions for hundreds of object categories in the ImageNet object recognition dataset that are not observed in MSCOCO image-caption training data, as well as many categories that are observed very rarely. Both automatic evaluations and human judgements show that our model considerably outperforms prior work in being able to describe many more categories of objects.
Diverse and accurate vision+language modeling is an important goal to retain creative freedom and maintain user engagement. However, adequately capturing the intricacies of diversity in language models is challenging. Recent works commonly resort to latent variable models augmented with more or less supervision from object detectors or part-of-speech tags. Common to all those methods is the fact that the latent variable either only initializes the sentence generation process or is identical across the steps of generation. Both methods offer no fine-grained control. To address this concern, we propose Seq-CVAE which learns a latent space for every word position. We encourage this temporal latent space to capture the intention about how to complete the sentence by mimicking a representation which summarizes the future. We illustrate the efficacy of the proposed approach to anticipate the sentence continuation on the challenging MSCOCO dataset, significantly improving diversity metrics compared to baselines while performing on par w.r.t sentence quality.
A wide range of image captioning models has been developed, achieving significant improvement based on popular metrics, such as BLEU, CIDEr, and SPICE. However, although the generated captions can accurately describe the image, they are generic for similar images and lack distinctiveness, i.e., cannot properly describe the uniqueness of each image. In this paper, we aim to improve the distinctiveness of image captions through training with sets of similar images. First, we propose a distinctiveness metric -- between-set CIDEr (CIDErBtw) to evaluate the distinctiveness of a caption with respect to those of similar images. Our metric shows that the human annotations of each image are not equivalent based on distinctiveness. Thus we propose several new training strategies to encourage the distinctiveness of the generated caption for each image, which are based on using CIDErBtw in a weighted loss function or as a reinforcement learning reward. Finally, extensive experiments are conducted, showing that our proposed approach significantly improves both distinctiveness (as measured by CIDErBtw and retrieval metrics) and accuracy (e.g., as measured by CIDEr) for a wide variety of image captioning baselines. These results are further confirmed through a user study.
Video paragraph captioning aims to describe multiple events in untrimmed videos with descriptive paragraphs. Existing approaches mainly solve the problem in two steps: event detection and then event captioning. Such two-step manner makes the quality of generated paragraphs highly dependent on the accuracy of event proposal detection which is already a challenging task. In this paper, we propose a paragraph captioning model which eschews the problematic event detection stage and directly generates paragraphs for untrimmed videos. To describe coherent and diverse events, we propose to enhance the conventional temporal attention with dynamic video memories, which progressively exposes new video features and suppresses over-accessed video contents to control visual focuses of the model. In addition, a diversity-driven training strategy is proposed to improve diversity of paragraph on the language perspective. Considering that untrimmed videos generally contain massive but redundant frames, we further augment the video encoder with keyframe awareness to improve efficiency. Experimental results on the ActivityNet and Charades datasets show that our proposed model significantly outperforms the state-of-the-art performance on both accuracy and diversity metrics without using any event boundary annotations. Code will be released at https://github.com/syuqings/video-paragraph.
Figures, such as bar charts, pie charts, and line plots, are widely used to convey important information in a concise format. They are usually human-friendly but difficult for computers to process automatically. In this work, we investigate the problem of figure captioning where the goal is to automatically generate a natural language description of the figure. While natural image captioning has been studied extensively, figure captioning has received relatively little attention and remains a challenging problem. First, we introduce a new dataset for figure captioning, FigCAP, based on FigureQA. Second, we propose two novel attention mechanisms. To achieve accurate generation of labels in figures, we propose Label Maps Attention. To model the relations between figure labels, we propose Relation Maps Attention. Third, we use sequence-level training with reinforcement learning in order to directly optimizes evaluation metrics, which alleviates the exposure bias issue and further improves the models in generating long captions. Extensive experiments show that the proposed method outperforms the baselines, thus demonstrating a significant potential for the automatic captioning of vast repositories of figures.
Describing images using natural language is widely known as image captioning, which has made consistent progress due to the development of computer vision and natural language generation techniques. Though conventional captioning models achieve high accuracy based on popular metrics, i.e., BLEU, CIDEr, and SPICE, the ability of captions to distinguish the target image from other similar images is under-explored. To generate distinctive captions, a few pioneers employ contrastive learning or re-weighted the ground-truth captions, which focuses on one single input image. However, the relationships between objects in a similar image group (e.g., items or properties within the same album or fine-grained events) are neglected. In this paper, we improve the distinctiveness of image captions using a Group-based Distinctive Captioning Model (GdisCap), which compares each image with other images in one similar group and highlights the uniqueness of each image. In particular, we propose a group-based memory attention (GMA) module, which stores object features that are unique among the image group (i.e., with low similarity to objects in other images). These unique object features are highlighted when generating captions, resulting in more distinctive captions. Furthermore, the distinctive words in the ground-truth captions are selected to supervise the language decoder and GMA. Finally, we propose a new evaluation metric, distinctive word rate (DisWordRate) to measure the distinctiveness of captions. Quantitative results indicate that the proposed method significantly improves the distinctiveness of several baseline models, and achieves the state-of-the-art performance on both accuracy and distinctiveness. Results of a user study agree with the quantitative evaluation and demonstrate the rationality of the new metric DisWordRate.